精英家教网 > 高中数学 > 题目详情

【题目】已知函数 (其中).对于不相等的实数,设 .现有如下命题:

(1)对于任意不相等的实数,都有

(2)对于任意的a及任意不相等的实数,都有

(3)对于任意的a,存在不相等的实数,使得

(4)对于任意的a,存在不相等的实数,使得.

其中的真命题有_____________(写出所有真命题的序号).

【答案】①④

【解析】 对于①中,由于指数函数为单调递增函数,所以是成立的,所以是正确的;

对于②中,由于二次函数的单调性可知递减,在上单调递增,

所以是不一定成立的,所以是不正确的;

对于③中,由于,可得,即为

时, ,则单调递减,所以不正确。

对于中,由于,可得,即为

对于任意的不恒大于或小于存在不相等的实数 ,使得

所以是正确的,故选①④.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 (为常数, 为自然对数的底数).

(Ⅰ)当时,讨论函数在区间上极值点的个数;

(Ⅱ)当 时,对任意的都有成立,求正实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 底面,底面是直角梯形, 的中点.

1)求证:平面平面

2)若二面角的余弦值为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)= , g(x)是二次函数,若f(g(x))的值域是[0,+∞),则函数g(x)的值域是(  )
A.(﹣∞,﹣1]∪[1,+∞)
B.(﹣∞,﹣1]∪[0,+∞)
C.[0,+∞)
D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集I=R,集合A={x∈R|},集合B是不等式2|x+1|<4的解集,求A∩(CIB).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=kx2+2x(k为实常数)为奇函数,函数g(x)=af(x)﹣1(a>0且a≠1).
(Ⅰ)求k的值;
(Ⅱ)求g(x)在[﹣1,2]上的最大值;
(Ⅲ)当a=时,g(x)≤t2﹣2mt+1对所有的x∈[﹣1,1]及m∈[﹣1,1]恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】先后2次抛掷一枚骰子,将得到的点数分别记为

)求满足的概率;

)设三条线段的长分别为5,求这三条线段能围成等腰三角形(含等边三角形)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正△ABC三个顶点都在半径为2的球面上,球心O到平面ABC的距离为1,点E是线段AB的中点,过点E作球O的截面,则截面面积的最小值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列五个命题中:
①函数y=loga(2x﹣1)+2015(a>0且a≠1)的图象过定点(1,2015);
②若定义域为R函数f(x)满足:对任意互不相等的x1、x2都有(x1﹣x2)[f(x1)﹣f(x2)]>0,则f(x)是减函数;
③f(x+1)=x2﹣1,则f(x)=x2﹣2x;
④若函数f(x)=是奇函数,则实数a=﹣1;
⑤若a=(c>0,c≠1),则实数a=3.
其中正确的命题是 .(填上相应的序号).

查看答案和解析>>

同步练习册答案