【题目】市某机构为了调查该市市民对我国申办2034年足球世界杯的态度,随机选取了位市民进行调查,调查结果统计如下:
不支持 | 支持 | 合计 | |
男性市民 | |||
女性市民 | |||
合计 |
(1)根据已知数据把表格数据填写完整;
(2)利用(1)完成的表格数据回答下列问题:
(i)能否有的把握认为支持申办足球世界杯与性别有关;
(ii)已知在被调查的支持申办足球世界杯的男性市民中有位退休老人,其中位是教师,现从这位退体老人中随机抽取人,求至多有位老师的概率.
参考公式:,其中.
参考数据:
科目:高中数学 来源: 题型:
【题目】如图,在四边形中,,,四边形为矩形,且平面,.
(1)求证:平面;
(2)点在线段上运动,当点在什么位置时,平面与平面所成锐二面角最大,并求此时二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,M(﹣2,0).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,A(ρ,θ)为曲线C上一点,B(ρ,θ+ ),且|BM|=1.
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)求|OA|2+|MA|2的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)=x3+ax2+bx(a,b∈R)的图象与x轴相切于一点A(m,0)(m≠0),且f(x)的极大值为 ,则m的值为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,过点P分别做圆O的切线PA、PB和割线PCD,弦BE交CD于F,满足P、B、F、A四点共圆.
(Ⅰ)证明:AE∥CD;
(Ⅱ)若圆O的半径为5,且PC=CF=FD=3,求四边形PBFA的外接圆的半径.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知点与两个定点,的距离之比为.
(1)求点的坐标所满足的关系式;
(2)求面积的最大值;
(3)若恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱中,各个侧面均是边长为的正方形,为线段的中点.
(1)求证:直线平面;
(2)求直线与平面所成角的余弦值;
(3)设为线段上任意一点,在内的平面区域(包括边界)是否存在点,使,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2016年04月13日“山东济南非法经营疫苗系列案件”披露后,引发社会高度关注,引起公众、受种者和儿童家长对涉案疫苗安全性和有效性的担忧。为采取后续处置措施提供依据,保障受种者的健康,尽快恢复公众接种疫苗的信心,科学严谨地分析涉案疫苗接种给受种者带来的安全性风险和是否有效,对某疫苗预防疾病的效果,进行动物实验,得到下面表格中的统计数据:现从所有试验动物中任取一只,取到“注射疫苗”动物的概率为.
未发病 | 发病 | 合计 | |
未注射疫苗 |
| ||
注射疫苗 |
|
| |
合计 |
(1)求列联表中的数据的值;
(2)绘制发病率的条形统计图,并判断疫苗是否有效?
(3)能够有多大把握认为疫苗有效?
附:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com