分析 根据已知中函数的解析式,归纳出函数解析中分母系数的变化规律,进而得到答案.
解答 解:由已知中设函数f(x)=$\frac{x}{2x+2}$(x>0),观察:
f1(x)=f(x)=$\frac{x}{2x+2}$,
f2(x)=f(f1(x))=$\frac{x}{6x+4}$;
f3(x)=f(f2(x))=$\frac{x}{14x+8}$.
f4(x)=f(f3(x))=$\frac{x}{30x+16}$
…
归纳可得:fn(x)=$\frac{x}{({2}^{n+1}-2)x+{2}^{n}}$,(n∈N*)
∴fn(1)=$\frac{1}{{2}^{n+1}-2+{2}^{n}}$=$\frac{1}{{3•2}^{n}-2}$(n∈N*),
故答案为:$\frac{1}{{3•2}^{n}-2}$(n∈N*)
点评 归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 16($π-\sqrt{3}$) | B. | 16($π-\sqrt{2}$) | C. | 8(2$π-3\sqrt{2}$) | D. | 8(2$π-\sqrt{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,-$\frac{1}{2}$] | B. | [-1,0] | C. | [0,1] | D. | [1,$\frac{3}{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com