精英家教网 > 高中数学 > 题目详情
9.某种树的分枝生长规律如图所示(如前4年分枝数分别为1,1,2,3),则预计第7年树的分枝数为(  )
A.8B.12C.13D.16

分析 由图形求出这种树的从第一年的分枝数,可发现从第三项起每一项都等于前两项的和,由此规律即可求出第7年树的分枝数.

解答 解:由题意得,这种树的从第一年的分枝数分别是1,1,2,3,5,…,
则2=1+1,3=1+2,5=2+3,即从第三项起每一项都等于前两项的和,
所以第6年树的分枝数是3+5=8,
第7年树的分枝数是5+8=13,
故选:C

点评 本题考查了归纳推理,难点在于发现其中的规律,考查观察、分析、归纳能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图,长方体ABCD-A1B1C1D1中,AB=AD=1.
(1)求异面直线A1B1与BD所成角的大小;
(2)∠B1AB=60°,求三棱锥B1-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知a是实数,函数f(x)=x2(x-a),若f′(1)=3,则曲线y=f(x)在点(1,f(1))处的切线方程为3x-y-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.通过伸缩变换,下列曲线形态可能发生是(  )
(1)直线(2)圆(3)椭圆(4)双曲线(5)抛物线.
A.(2)(3)B.(1)(4)(5)C.(1)(2)(3)D.(2)(3)(4)(5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某校从高二年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),[90,100]后得到如图的频率分布直方图.
(1)求图中实数a的值;
(2)若该校高二年级共有学生640人,试估计该校高二年级期中考试数学成绩不低于60分的人数;
(3)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生,求这两名学生的数学成绩之差的绝对值不大于10的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=ax2+bx+c,a,b,c∈R,定义域为[-1,1],
(Ⅰ)当a=1,|f(x)|≤1时,求证:|1+c|≤1;
(Ⅱ)当b>2a>0时,是否存在x∈[-1,1],使得|f(x)|≥b?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设函数f(x)=$\frac{x}{2x+2}$(x>0),观察:
f1(x)=f(x)=$\frac{x}{2x+2}$,
f2(x)=f(f1(x))=$\frac{x}{6x+4}$;
f3(x)=f(f2(x))=$\frac{x}{14x+8}$.
f4(x)=f(f3(x))=$\frac{x}{30x+16}$

根据以上事实,当n∈N*时,由归纳推理可得:fn(1)=$\frac{1}{{3•2}^{n}-2}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示,圆柱的高为2,底面半径为$\sqrt{7}$,AE,DF是圆柱的两条母线,过AD做圆柱的截面交下底面于BC,四边形ABCD是正方形.
(I)求证:BC⊥BE;
(Ⅱ)求四棱锥E-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.下列四个数中,正数的个数是①④.
①$\frac{b+m}{a+m}$-$\frac{b}{a}$,a>b>0,m>0;
②($\sqrt{n+3}$+$\sqrt{n}$)-($\sqrt{n+2}$+$\sqrt{n+1}$),n∈N*
③2(a2+b2)-(a+b)2,a,b∈R;
④$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$-2,x∈R.

查看答案和解析>>

同步练习册答案