精英家教网 > 高中数学 > 题目详情
14.已知f(x)=ax2+bx+c,a,b,c∈R,定义域为[-1,1],
(Ⅰ)当a=1,|f(x)|≤1时,求证:|1+c|≤1;
(Ⅱ)当b>2a>0时,是否存在x∈[-1,1],使得|f(x)|≥b?

分析 (Ⅰ)当a=1时,f(x)=x2+bx+c,结合|f(x)|≤1及绝对值三角不等式可证得:|1+c|≤1;
(Ⅱ)当b>2a>0时,$-\frac{b}{2a}<-1$,则f(x)在[-1,1]上递增且b>0,分类讨论满足|f(x)|≥b的x值,综合讨论结果可得答案.

解答 证明:(Ⅰ)当a=1时,f(x)=x2+bx+c,
∵|f(x)|≤1
∴|f(-1)|=|1-b+c|≤1,|f(1)|=|1+b+c|≤1,
∵|1-b+c+1+b+c|≤|1-b+c|+|1+b+c|≤2,
∴|2+2c|≤2
∴|1+c|≤1…(6分)
解:(Ⅱ)∵b>2a>0,
∴$-\frac{b}{2a}<-1$,则f(x)在[-1,1]上递增且b>0
∴f(x)∈[a-b+c,a+b+c]…(9分)
①当a+c>0时,a+b+c>b>0…(11分)
此时有|f(1)|≥b即存在x=1,使得|f(x)|≥b成立
②当a+c<0时,a-b+c<-b<0…(13分)
此时有|f(-1)|≥b即存在x=-1使得|f(x)|≥b成立
③当a+c=0时,f(x)∈[-b,b],存在x使得|f(x)|≥b成立
∴存在x=±1使得|f(x)|≥b成立…(15分)

点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图所示,在直三棱柱ABO-A′B′O′中,OO′=4,OA=4,OB=3,∠AOB=90°,D是线段A′B′的中点,P是侧棱BB′上的一点,若OP⊥BD,求OP与底面AOB所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在平行四边形ABCD中,AB⊥BD,AB=1,BD=$\sqrt{2}$,若将其沿BD折成直二面角A-BD-C,则三棱锥A-BDC的外接球的表面积为(  )
A.πB.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在平面直角坐标系xOy中,已知R(x0,y0)是椭圆C:$\frac{x^2}{24}+\frac{y^2}{12}$=1上的一点,从原点O向圆R:(x-x02+(y-y02=8作两条切线,分别交椭圆于点P,Q.
(1)若R点在第一象限,且直线OP,OQ互相垂直,求圆R的方程;
(2)若直线OP,OQ的斜率存在,并记为k1,k2,求k1•k2的值;
(3)试问OP2+OQ2是否为定值?若是,求出该值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某种树的分枝生长规律如图所示(如前4年分枝数分别为1,1,2,3),则预计第7年树的分枝数为(  )
A.8B.12C.13D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某校为了解学生一次考试后数学、物理两个科目的成绩情况,从中随机抽取了25位考生的成绩进行统计分析.25位考生的数学成绩已经统计在茎叶图中,物理成绩如下:
90    71    64     66   72   39    49   46    55    56   85    52    6l
80    66    67    78    70   51    65   42    73    77   58     67

(1)请根据数据在答题卡的茎叶图中完成物理成绩统计;
( 2)请根据数据在答题卡上完成数学成绩的频数分布表及数学成绩的频率分布直方图;
数学成绩的频数分布表
数学成绩分组[50,60)[60,70)[70,80)[80,90)[90,100)[100,110)[110,120]
频数1237651
(3)设上述样本中第i位考生的数学、物理成绩分别为xi,yi(i=1,2,3,…,25).通过对样本数据进行初步处理发现:数学、物理成绩具有线性相关关系,得到:
$\overline{x}$=$\frac{1}{25}$$\sum_{i=1}^{25}{x}_{i}$=86,$\overline{y}$=$\frac{1}{25}$$\sum_{i=1}^{25}$yi=64,$\sum_{i=1}^{25}$(xi-$\overline{x}$)(yi-$\overline{y}$)=4698,$\sum_{i=1}^{25}$(xi-$\overline{x}$)2=5524,$\frac{4698}{5524}$≈0.85
求y关于x的线性回归方程,并据此预测当某考生的数学成绩为100分时,该考生的物理成绩(精确到1分).附:回归直线方程的斜率和截距的最小二乘估计公式分别为:
$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.半径为2的球O中有一内接正四棱柱(底面是正方形,侧棱垂直底面),当该正四棱柱的侧面积最大时,球的表面积与该正四棱柱的侧面积之差是(  )
A.16($π-\sqrt{3}$)B.16($π-\sqrt{2}$)C.8(2$π-3\sqrt{2}$)D.8(2$π-\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=(x2-x+1)•ex+2,x∈R
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若函数g(x)=f(x)-k有且只有一个零点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,一只转盘,均匀标有8个数,现转动转盘,则转盘停止转动时,指针向奇数的概率是(  )
A.$\frac{1}{2}$B.$\frac{2}{5}$C.$\frac{3}{8}$D.$\frac{5}{8}$

查看答案和解析>>

同步练习册答案