分析 ①作差,通分即可比较,
(2)平方法,即可比较,
(3)配方即可比较,
(4)利用基本不等式即可比较.
解答 解:①∵a>b>0,m>0;
∴$\frac{b+m}{a+m}$-$\frac{b}{a}$=$\frac{m(a-b)}{a(a+m)}$>0,故①正确;
②∵($\sqrt{n+3}$+$\sqrt{n}$)2=2n+3+2$\sqrt{n(n+3)}$=2n+3+2$\sqrt{{n}^{2}+3n}$,($\sqrt{n+2}$+$\sqrt{n+1}$)2=2n+3+2$\sqrt{(n+2)(n+1)}$=2n+3+2$\sqrt{{n}^{2}+3n+2}$
∴($\sqrt{n+3}$+$\sqrt{n}$)-($\sqrt{n+2}$+$\sqrt{n+1}$)<0,故②错误;
③∵a,b∈R;
∴2(a2+b2)-(a+b)2=a2+b2-2ab=(a-b)2≥0,故③错误;
④∵$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$=$\frac{(\sqrt{{x}^{2}+2})^{2}+1}{\sqrt{{x}^{2}+2}}$=$\sqrt{{x}^{2}+2}$+$\frac{1}{\sqrt{{x}^{2}+2}}$>2,
∴$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$-2>0,故④正确;
故正数的个数是①④,
故答案为:①④.
点评 本题考查了比较大小的方法,作差法,平方法,基本不等式法,配方法,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 气温x(℃) | 18 | 13 | 10 | -1 |
| 用电量y(度) | 24 | 34 | 38 | 64 |
| A. | 68 | B. | 67 | C. | 66 | D. | 65 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{8}$ | D. | $\frac{5}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com