精英家教网 > 高中数学 > 题目详情
8.△ABC中,角A、B、C的对边长分别为a、b、c,D是BC的中点,若a=4,AD=c-b,则△ABC的面积的最大值为$2\sqrt{3}$.

分析 在△ABD和△ACD中分别使用余弦定理得出bc的关系,求出cosA,sinA,代入面积公式求出最大值.

解答 解:在△ABC中,∵角A、B、C的对边长分别为a、b、c,D是BC的中点,
若a=4,AD=c-b,
则$\left\{\begin{array}{l}{c}^{2}={2}^{2}+(c-b)^{2}-4(c-b)cos∠ADB\\{b}^{2}={2}^{2}+(c-b)^{2}-4(c-b)cos∠ADC\end{array}\right.$,
∵∠ADB=π-∠ADC,
∴b2+c2=8+2(c-b)2,即b2+c2-4bc+8=0,
故cosA=$\frac{{b}^{2}+{c}^{2}-16}{2bc}$=$\frac{2bc-12}{bc}$,
故sinA=$\sqrt{1-{cos}^{2}A}$=$\sqrt{1-(\frac{2bc-12}{bc})^{2}}$,
∴△ABC的面积S=$\frac{1}{2}$bcsinA=$\frac{1}{2}$$\sqrt{-3(bc-8)^{2}+48}$≤$2\sqrt{3}$,
即△ABC的面积的最大值为$2\sqrt{3}$,
故答案为:$2\sqrt{3}$

点评 本题考查了余弦定理得应用,根据余弦定理得出bc的关系是解题关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图所示,圆柱的高为2,底面半径为$\sqrt{7}$,AE,DF是圆柱的两条母线,过AD做圆柱的截面交下底面于BC,四边形ABCD是正方形.
(I)求证:BC⊥BE;
(Ⅱ)求四棱锥E-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.下列四个数中,正数的个数是①④.
①$\frac{b+m}{a+m}$-$\frac{b}{a}$,a>b>0,m>0;
②($\sqrt{n+3}$+$\sqrt{n}$)-($\sqrt{n+2}$+$\sqrt{n+1}$),n∈N*
③2(a2+b2)-(a+b)2,a,b∈R;
④$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$-2,x∈R.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某种产品的广告费支出x与销售额y之间有如表对应数据(单位:百万元).根据如表求出y关于x的线性回归方程为 $\widehat{y}$=6.5x+17.5,则表中t的值为(  )
x24568
y304060t70
A.56.5B.60.5C.50D.62

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在四边形ABCD中,∠A+∠C=180°,AB=CD=2,BC=3,AD=1,则四边形ABCD的面积为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数x与烧开一壶水所用时间y的一组数据,且做了一定的数据处理(如表),做出了散点图(如图).
$\overline x$$\overline y$$\overline w$$\sum_{i=1}^{10}{{{({x_i}-\overline x)}^2}}$$\sum_{i=1}^{10}{{{({w_i}-\overline w)}^2}}$$\sum_{i=1}^{10}{({x_i}-\overline x)}({y_i}-\overline y)$$\sum_{i=1}^{10}{({w_i}-\overline w)}({y_i}-\overline y)$
1.4720.60.782.350.81-19.316.2
表中wi=$\frac{1}{x_i^2},\overline w=\frac{1}{10}\sum_{i=1}^{10}{w_i}$.
(1)根据散点图判断,y=a+bx与y=c+$\frac{d}{x^2}$哪一个更适宜作烧水时间y关于开关旋转角x的回归方程类型?(不必说明理由)
(2)根据判断结果和表中数据,建立y关于x的回归方程;
(3)若旋转角x与单位时间内煤气输出量t成正比,那么x为多少时,烧开一壶水最省煤气?
附:对于一组数据(u1,v1),(u2,v2),(u3,v3),…,(un,vn),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为$\widehat{β}$=$\frac{\sum_{i=1}^{n}({v}_{i}-\overline{v})({u}_{i}-\overline{u})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\widehat{α}$=$\overline{v}$-$\widehat{β}$$\overline{u}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=2lnx在x=2处切线的斜率为(  )
A.1B.2C.4D.2ln2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某天要安排语文、数学、英语、体育、计算机、心理6节课,则不同排法有(  )
A.600种B.480种C.560种D.720种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在直三棱柱ABC-A1B1C1中,AB⊥BC,AA1=2,AC=2$\sqrt{2}$,M是CC1的中点,P是AM的中点,点Q在线段BC1上,且BQ=$\frac{1}{3}$QC1
(1)证明:PQ∥平面ABC;
(2)若∠BAC=30°,求三棱锥A-PBQ的体积.

查看答案和解析>>

同步练习册答案