精英家教网 > 高中数学 > 题目详情
17.某天要安排语文、数学、英语、体育、计算机、心理6节课,则不同排法有(  )
A.600种B.480种C.560种D.720种

分析 安排语文、数学、英语、体育、计算机、心理6节课,全排即可

解答 解:安排语文、数学、英语、体育、计算机、心理6节课,全排即可,故有A66=720种,
故选:D

点评 本题考查了简单的排列问题,关键是分清是排列和组合,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.设点A,B分别是x,y轴上的两个动点,AB=1,若$\overrightarrow{BA}=\overrightarrow{AC}$.
(1)求点C的轨迹Γ;
(2)已知直线l:x+4y-2=0,过点D(2,2)作直线m交轨迹Γ于不同的两点E,F,交直线l于点K.问$\frac{|DK|}{|DE|}$+$\frac{|DK|}{|DF|}$的值是否为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.△ABC中,角A、B、C的对边长分别为a、b、c,D是BC的中点,若a=4,AD=c-b,则△ABC的面积的最大值为$2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的宣传费xi和年销售量yi(i=1,2,3,..8)数据作了初步处理,得到下面的散点图及一些统计量的值.
$\overline{x}$$\overline{y}$$\overline{w}$$\sum_{i=1}^{n}$(xi-$\overline{x}$)2$\sum_{i=1}^{n}$(wi-$\overline{w}$)2$\sum_{i=1}^{n}$(xi-$\overline{x}$)(yi-$\overline{y}$)$\sum_{i=1}^{n}$(wi-$\overline{w}$)(yi-$\overline{y}$)
46.656.36.8289.81.61469108.8
表中:wi=$\sqrt{{x}_{i}}$,$\overrightarrow{w}$=$\frac{1}{8}$$\sum_{i=1}^{n}$wi
(Ⅰ)根据散点图判断,y=a+bx与y=c+d$\sqrt{x}$,哪一个适宜作为年销售量y关于年宣传费x的回归方程类型(给出判断即可,不必说明理由);
(Ⅱ)根据(I)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)已知这种产品的年利润z与x,y的关系为z=0.2y-x,根据(II)的结果回答下列问题:
(i)当年宣传费x=49时,年销售量及年利润的预报值时多少?
(ii)当年宣传费x为何值时,年利润的预报值最大?
附:对于一组数据(u1,v1),(u2,v2)…(un,vn),其回归线$\widehat{v}$=$\widehat{α}$+$\widehat{β}$$\overline{u}$的斜率和截距的最小二乘估计分别为:$\widehat{β}$=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\widehat{α}$=$\overline{v}$-$\widehat{β}$$\overline{u}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若抛物线y2=$\frac{1}{2p}$x的焦点与椭圆$\frac{x^2}{6}+\frac{y^2}{2}$=1的右焦点重合,则p的值为$\frac{1}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.10个人相互握手,总共要握手45次;10个人相互通一封信,总共要通信90封.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=x-|x+2|-|x-3|-m(m∈R).
(Ⅰ)当m=-4时,求函数f(x)的最大值;
(Ⅱ)若存在x0∈R,使得f(x0)≥$\frac{1}{m}$-4,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示的几何体为一简单组合体,在底面ABCD中,∠DAB=60°,AD⊥DC,AB⊥BC,QD⊥平面ABCD,PA∥QD,PA=1,AD=AB=QD=2.
(Ⅰ)求证:平面PAB⊥平面QBC;
(Ⅱ)求该组合体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.等差数列{an}的前n项和为Sn,已知S10=0,S15=25,则使(n+1)Sn取最小值的n等于6或7.

查看答案和解析>>

同步练习册答案