精英家教网 > 高中数学 > 题目详情
20.已知a是实数,函数f(x)=x2(x-a),若f′(1)=3,则曲线y=f(x)在点(1,f(1))处的切线方程为3x-y-2=0.

分析 求得f(x)的导数,由f′(1)=3,可得a=0,求出f(x)的解析式和导数,可得所求切线的斜率和切点,运用点斜式方程,可得所求切线的方程.

解答 解:函数f(x)=x2(x-a)的导数为
f′(x)=2x(x-a)+x2=3x2-2ax,
f′(1)=3,即为3-2a=3,
解得a=0,即f(x)=x3,f′(x)=3x2
可得曲线y=f(x)在点(1,f(1))处的切线斜率为3,
切点为(1,1),
即有切线的方程为y-1=3(x-1),
即为3x-y-2=0.
故答案为:3x-y-2=0.

点评 本题考查导数的运用:求切线的方程,考查导数的几何意义:函数在某点处的导数即为曲线在该点处的切线的斜率,正确求导和运用点斜式方程是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.甲、乙两名射手在同一条件下射击,所得环数X1,X2的分布列分别为
 X1 610 
 P 0.160.14 0.42 0.1 0.18 
 X2 6 710 
 P 0.190.24 0.12 0.28 0.17 
根据环数的均值和方差比较这两名射手的射击水平.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若图所示,将若干个点摆成三角形图案,每条边(包括两个端点)n(n>1,n∈N*)个点,相应的图案中总的点数记为an,则$\frac{9}{{a}_{2}{a}_{3}}$+$\frac{9}{{a}_{3}{a}_{4}}$+$\frac{9}{{a}_{4}{a}_{5}}$+…+$\frac{9}{{a}_{2015}{a}_{2016}}$=$\frac{2014}{2015}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:(单位:万元)
收入x8.28.610.011.311.9
支出y6.27.58.08.59.8
(1)请画出上表数据的散点图;(3)试根据(2)求出的线性回归方程,预测该社区一户收入为15万元家庭年支出为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,三棱柱ABC-A1B1C1中,侧棱A1A⊥底面ABC,且各棱长均相等,D,E,F分别为棱AB,BC,A1C1的中点.
(Ⅰ)证明EF∥平面A1CD;
(Ⅱ)证明平面A1CD⊥平面A1ABB1
(Ⅲ)求直线BC与平面A1CD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在平行四边形ABCD中,AB⊥BD,AB=1,BD=$\sqrt{2}$,若将其沿BD折成直二面角A-BD-C,则三棱锥A-BDC的外接球的表面积为(  )
A.πB.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:

则第15个图案中有白色地面砖62块.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某种树的分枝生长规律如图所示(如前4年分枝数分别为1,1,2,3),则预计第7年树的分枝数为(  )
A.8B.12C.13D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知正棱锥P-ABCD中,PA⊥平面ABCD,△PAC为等腰直角三角形,PA=6,底面ABCD为平行四边形,且∠ABC+∠ADC=90°,E为线段AD的中点,F在线段PD上运动,记$\frac{PF}{PD}$=λ.
(1)若λ=$\frac{1}{2}$,证明:平面BEF⊥平面ABCD;
(2)当λ=$\frac{1}{3}$时,PA=AB=AC,求三棱锥C-BEF的体积.

查看答案和解析>>

同步练习册答案