精英家教网 > 高中数学 > 题目详情
11.若图所示,将若干个点摆成三角形图案,每条边(包括两个端点)n(n>1,n∈N*)个点,相应的图案中总的点数记为an,则$\frac{9}{{a}_{2}{a}_{3}}$+$\frac{9}{{a}_{3}{a}_{4}}$+$\frac{9}{{a}_{4}{a}_{5}}$+…+$\frac{9}{{a}_{2015}{a}_{2016}}$=$\frac{2014}{2015}$.

分析 根据题意,可得a2=3=3×(2-1),a3=6=3×(3-1),a4=9=3×(4-1),a5=12=3×(5-1)…an=3(n-1),数列{an}是首项为3,公差为3的等差数列,通项为an=3(n-1)(n≥2),所以$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{3(n-1)•3n}$=$\frac{1}{9}$($\frac{1}{n-1}$-$\frac{1}{n}$),据此解答即可.

解答 解:根据分析,可得
a2=3=3×(2-1),a3=6=3×(3-1),a4=9=3×(4-1),a5=12=3×(5-1)…an=3(n-1),
数列{an}是首项为3,公差为3的等差数列,通项为an=3(n-1)(n≥2);
所以$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{3(n-1)•3n}$=$\frac{1}{9}$($\frac{1}{n-1}$-$\frac{1}{n}$),
则$\frac{9}{{a}_{2}{a}_{3}}$+$\frac{9}{{a}_{3}{a}_{4}}$+$\frac{9}{{a}_{4}{a}_{5}}$+…+$\frac{9}{{a}_{2015}{a}_{2016}}$=1-$\frac{1}{2}$+$\frac{1}{2}-\frac{1}{3}$+…+$\frac{1}{2014}$-$\frac{1}{2015}$=$\frac{2014}{2015}$.
故答案为:$\frac{2014}{2015}$.

点评 本题主要考查了图形的变化类,解答此题的关键是根据已知的图形中点数的变化推得an=3(n-1)(n≥2).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)满足:f(x)≥|x|且f(x)≥2x,x∈R.(  )
A.若f(a)≤|b|,则a≤bB.若f(a)≤2b,则a≤bC.若f(a)≥|b|,则a≥bD.若f(a)≥2b,则a≥b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.正△ABC的边长为4,CD是AB边上的高,E、F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B.
(1)试判断直线AB与平面DEF的位置关系,并说明理由;
(2)求三棱锥E-AFD的体积;
(3)求四面体ABCD外接球的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,长方体ABCD-A1B1C1D1中,AB=AD=1.
(1)求异面直线A1B1与BD所成角的大小;
(2)∠B1AB=60°,求三棱锥B1-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在多面体ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC是边长为2的等边三角形,AE=1,CD与平面ABDE所成角的正弦值为$\frac{{\sqrt{6}}}{4}$.
(Ⅰ)若F是线段CD的中点,证明:EF⊥面DBC;
(Ⅱ)求多面体ABCDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某地政府决定用同规格大理石建一堵七层的护墙,各层用该种大理石块数是:第一层用全部大理石的一半多一块,第二层用剩下的一半多一块,第三层…以此类推,到第七层恰好将大理石用完,则共需该种大理石(  )
A.128块B.126块C.64块D.62块

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知正项数列{an}的前n项和为Sn,且满足an+Sn=1(n∈N*).
(1)求数列{an}的通项公式;
(2)设${c_n}=\frac{1}{a_n}$,数列{bn}满足${b_1}{c_1}+{b_2}{c_2}+…+{b_n}{c_n}=(2n-1){2^{n+1}}+2$,求数列{bn}的通项公式;
(3)设${d_n}=\frac{1}{a_n}-1$,求证:$\frac{d_1}{d_2}+\frac{d_2}{d_3}+…+\frac{d_n}{{{d_{n+1}}}}>\frac{n}{2}-\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知a是实数,函数f(x)=x2(x-a),若f′(1)=3,则曲线y=f(x)在点(1,f(1))处的切线方程为3x-y-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设函数f(x)=$\frac{x}{2x+2}$(x>0),观察:
f1(x)=f(x)=$\frac{x}{2x+2}$,
f2(x)=f(f1(x))=$\frac{x}{6x+4}$;
f3(x)=f(f2(x))=$\frac{x}{14x+8}$.
f4(x)=f(f3(x))=$\frac{x}{30x+16}$

根据以上事实,当n∈N*时,由归纳推理可得:fn(1)=$\frac{1}{{3•2}^{n}-2}$(n∈N*).

查看答案和解析>>

同步练习册答案