精英家教网 > 高中数学 > 题目详情
3.已知正项数列{an}的前n项和为Sn,且满足an+Sn=1(n∈N*).
(1)求数列{an}的通项公式;
(2)设${c_n}=\frac{1}{a_n}$,数列{bn}满足${b_1}{c_1}+{b_2}{c_2}+…+{b_n}{c_n}=(2n-1){2^{n+1}}+2$,求数列{bn}的通项公式;
(3)设${d_n}=\frac{1}{a_n}-1$,求证:$\frac{d_1}{d_2}+\frac{d_2}{d_3}+…+\frac{d_n}{{{d_{n+1}}}}>\frac{n}{2}-\frac{1}{3}$.

分析 (1)通过an+Sn=1与an-1+Sn-1=1(n≥2)作差,进而整理可知数列{an}是首项、公比均为$\frac{1}{2}$的等比数列,计算即得结论;
(2)通过${b_1}{c_1}+{b_2}{c_2}+…+{b_n}{c_n}=(2n-1){2^{n+1}}+2$与b1c1+b2c2+…+bn-1cn-1=(2n-3)2n+2作差,利用an=$\frac{1}{{2}^{n}}$可知bn=2n+1;
(3)通过(1)可知${d_n}=\frac{1}{a_n}-1$=2n-1,进而裂项、放缩可知$\frac{{d}_{n}}{{d}_{n+1}}$≥$\frac{1}{2}$-$\frac{1}{3}$×$\frac{1}{{2}^{n}}$,然后相加、化简即得结论.

解答 (1)解:∵an+Sn=1,
∴an-1+Sn-1=1(n≥2),
两式相减得:an=$\frac{1}{2}$an-1(n≥2),
又∵a1+S1=1,即a1=$\frac{1}{2}$,
∴数列{an}是首项、公比均为$\frac{1}{2}$的等比数列,
∴其通项公式an=$\frac{1}{{2}^{n}}$;
(2)解:∵${b_1}{c_1}+{b_2}{c_2}+…+{b_n}{c_n}=(2n-1){2^{n+1}}+2$,
∴b1c1+b2c2+…+bn-1cn-1=(2n-3)2n+2,
两式相减得:bncn=(2n+1)2n
由(1)可知${c_n}=\frac{1}{a_n}$=2n,故bn=2n+1(n≥2),
又∵b1c1=6,即b1=3满足上式,
∴bn=2n+1;
(3)证明:由(1)可知${d_n}=\frac{1}{a_n}-1$=2n-1,
∵$\frac{{d}_{n}}{{d}_{n+1}}$=$\frac{{2}^{n}-1}{{2}^{n+1}-1}$=$\frac{1}{2}$-$\frac{1}{2({2}^{n+1}-1)}$=$\frac{1}{2}$-$\frac{1}{3×{2}^{n}+{2}^{n}-2}$≥$\frac{1}{2}$-$\frac{1}{3}$×$\frac{1}{{2}^{n}}$,
∴$\frac{{d}_{1}}{{d}_{2}}$+$\frac{{d}_{2}}{{d}_{3}}$+…+$\frac{{d}_{n}}{{d}_{n+1}}$≥n×$\frac{1}{2}$-$\frac{1}{3}$×($\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$)=$\frac{n}{2}$-$\frac{1}{3}$(1-$\frac{1}{{2}^{n}}$)>$\frac{n}{2}$-$\frac{1}{3}$,
即$\frac{d_1}{d_2}+\frac{d_2}{d_3}+…+\frac{d_n}{{{d_{n+1}}}}>\frac{n}{2}-\frac{1}{3}$.

点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知α,β∈(0,$\frac{π}{2}$),sin(α-β)=$\frac{3}{5}$,cosβ=$\frac{12}{13}$,则sinα=$\frac{56}{65}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,四边形ABCD为矩形,SA⊥平面ABCD,E、F分别是SC、SD的中点,$SA=AD=2,AB=\sqrt{6}$,
(1)求证:SD⊥平面AEF;
(2)求三棱锥F-AED的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若图所示,将若干个点摆成三角形图案,每条边(包括两个端点)n(n>1,n∈N*)个点,相应的图案中总的点数记为an,则$\frac{9}{{a}_{2}{a}_{3}}$+$\frac{9}{{a}_{3}{a}_{4}}$+$\frac{9}{{a}_{4}{a}_{5}}$+…+$\frac{9}{{a}_{2015}{a}_{2016}}$=$\frac{2014}{2015}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知某厂的产量x吨与能耗y吨的机组对应数据:
x3456
y2.5m44.5
由以上数据求出线性回归方程为y=0.35+0.7x,那么表中m的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:(单位:万元)
收入x8.28.610.011.311.9
支出y6.27.58.08.59.8
(1)请画出上表数据的散点图;(3)试根据(2)求出的线性回归方程,预测该社区一户收入为15万元家庭年支出为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,三棱柱ABC-A1B1C1中,侧棱A1A⊥底面ABC,且各棱长均相等,D,E,F分别为棱AB,BC,A1C1的中点.
(Ⅰ)证明EF∥平面A1CD;
(Ⅱ)证明平面A1CD⊥平面A1ABB1
(Ⅲ)求直线BC与平面A1CD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:

则第15个图案中有白色地面砖62块.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设P为曲线C:y=x2-2x+3上的点,且曲线C在点P处切线倾斜角的取值范围为[0,$\frac{π}{4}$],则点P横坐标的取值范围为(  )
A.[-1,-$\frac{1}{2}$]B.[-1,0]C.[0,1]D.[1,$\frac{3}{2}$]

查看答案和解析>>

同步练习册答案