精英家教网 > 高中数学 > 题目详情
6.如图,在多面体ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC是边长为2的等边三角形,AE=1,CD与平面ABDE所成角的正弦值为$\frac{{\sqrt{6}}}{4}$.
(Ⅰ)若F是线段CD的中点,证明:EF⊥面DBC;
(Ⅱ)求多面体ABCDE的体积.

分析 (I)取BC的中点M,AB的中点N,连结AM,FM,CN,DN,则∠CDN为CD与平面ABDE所成的角,根据CN的值计算CD,得出BD.于是AE与FM均与$\frac{1}{2}$BD平行且相等.得出四边形AMFE是平行四边形,故EF∥AM,由面面垂直的性质得出AM⊥平面BCD,故EF⊥平面BCD;
(II)多面体的体积为四棱锥C-ABDE的体积,底面为直角梯形,高为CN.

解答 解:(Ⅰ)证明:取BC的中点M,AB的中点N,连结AM,FM,CN,DN
∵△ABC是边长为2的等边三角形,
∴CN⊥AB,CN=$\sqrt{3}$,BN=1.
∵BD⊥平面ABC,CN?平面ABC,
∴BD⊥CN,又AB?平面ABDE,BD?平面ABDE,AB∩BD=B,
∴CN⊥平面ABDE.
同理可证:AM⊥平面BCD.
∴∠CDN为CD与平面ABDE所成的角.
∴sin∠CDN=$\frac{CN}{CD}$=$\frac{\sqrt{6}}{4}$,∴CD=2$\sqrt{2}$.∴BD=$\sqrt{C{D}^{2}-B{C}^{2}}$=2.
∵F是PC的中点,
∴FM$\stackrel{∥}{=}$$\frac{1}{2}BD$=1,又AE$\stackrel{∥}{=}$$\frac{1}{2}BD$.
∴四边形AMFE是平行四边形,
∴EF∥AM.
∵AM⊥面DBC,
∴EF⊥面DBC.
(Ⅱ)VC-ABDE=$\frac{1}{3}{S}_{梯形ABDE}•CN$=$\frac{1}{3}×\frac{1}{2}×(1+2)×2×\sqrt{3}$=$\sqrt{3}$.

点评 本题考查了线面垂直的判定,面面垂直的判定与性质,棱锥的体积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.在△ABC中,若sinA+sinB=sinC(cosA+cosB).
(1)判断△ABC的形状.
(2)在上述△ABC中,若角C的对边c=1,A=75°,求面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的前n项和Sn=5n2+3n,求该数列的前3项及通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,四边形ABCD为矩形,SA⊥平面ABCD,E、F分别是SC、SD的中点,$SA=AD=2,AB=\sqrt{6}$,
(1)求证:SD⊥平面AEF;
(2)求三棱锥F-AED的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图(a)已知线段BD=4,A,C关于BD对称,以BD为直径作圆,经过A,C两点,BA=2,延长DA,CB交于点P,将△PAB沿AB折起,使点P至点Q位置,得到图(b)所示空间图形,其中Q在平面ABCD内的射影恰为线段AD中点N,QD中点为M.
(1)求证:QD⊥平面ABM;
(2)求四棱锥M-ABCN体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若图所示,将若干个点摆成三角形图案,每条边(包括两个端点)n(n>1,n∈N*)个点,相应的图案中总的点数记为an,则$\frac{9}{{a}_{2}{a}_{3}}$+$\frac{9}{{a}_{3}{a}_{4}}$+$\frac{9}{{a}_{4}{a}_{5}}$+…+$\frac{9}{{a}_{2015}{a}_{2016}}$=$\frac{2014}{2015}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知某厂的产量x吨与能耗y吨的机组对应数据:
x3456
y2.5m44.5
由以上数据求出线性回归方程为y=0.35+0.7x,那么表中m的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,三棱柱ABC-A1B1C1中,侧棱A1A⊥底面ABC,且各棱长均相等,D,E,F分别为棱AB,BC,A1C1的中点.
(Ⅰ)证明EF∥平面A1CD;
(Ⅱ)证明平面A1CD⊥平面A1ABB1
(Ⅲ)求直线BC与平面A1CD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)若$y={log_{\frac{1}{3}}}(m{x^2}+2x+m)$的定义域为R,求实数m的取值范围;
(2)当x∈[-1,1]时,求函数$y={[{(\frac{1}{3})^x}]^2}-2a•{(\frac{1}{3})^x}+3$的最小值h(a).

查看答案和解析>>

同步练习册答案