精英家教网 > 高中数学 > 题目详情

对于三次函数,定义是函数的导函数。若方程有实数解,则称点为函数的“拐点”。有同学发现:任何一个三次函数既有拐点,又有对称中心,且拐点就是对称中心。根据这一发现,对于函数,则 的值为__________.

 

【答案】

4025

【解析】

试题分析:令,所以得函数的对称中心,于是点与点关于点对称,即,同理可得;而于是,所以同理可得,故.

考点:导数、函数新定义、中心对称.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(09年山东猜题卷)对于三次函数

定义:(1)设是函数的导数的导数,若方程有实数解,则称点为函数的“拐点”;

定义:(2)设为常数,若定义在上的函数对于定义域内的一切实数,都有成立,则函数的图象关于点对称。

己知,请回答下列问题:

(1)求函数的“拐点”的坐标

(2)检验函数的图象是否关于“拐点”对称,对于任意的三次函数写出一个有关“拐点”的结论(不必证明)

(3)写出一个三次函数,使得它的“拐点”是(不要过程)

查看答案和解析>>

科目:高中数学 来源: 题型:

对于三次函数,定义:设是函数的导函数的导数,若有实数解,则称点为函数的“拐点”。现已知,请解答下列问题:

(1)求函数的“拐点”A的坐标;

(2)求证的图象关于“拐点”A 对称;并写出对于任意的三次函数都成立的有关“拐点”的一个结论(此结论不要求证明).

查看答案和解析>>

科目:高中数学 来源:2013届浙江省台州市高二下学期期末考试理科数学试卷(解析版) 题型:填空题

对于三次函数,定义是函数的导函数。若方程有实数解,则称点为函数的“拐点”。有同学发现:任何一个三次函数既有拐点,又有对称中心,且拐点就是对称中心。根据这一发现,对于函数

的值为    

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省高三11月练习数学试卷 题型:解答题

对于三次函数

定义:(1)设是函数的导数的导数,若方程有实数解,则称点为函数的“拐点”;

定义:(2)设为常数,若定义在上的函数对于定义域内的一切实数,都有成立,则函数的图象关于点对称.

己知,请回答下列问题:

(1)求函数的“拐点”的坐标

(2)检验函数的图象是否关于“拐点”对称,对于任意的三次函数写出一个有关“拐点”的结论(不必证明)

(3)写出一个三次函数,使得它的“拐点”是(不要过程)

 

查看答案和解析>>

同步练习册答案