精英家教网 > 高中数学 > 题目详情
已知直线的极坐标方程为ρsin(θ+
π
4
)=
2
2
,圆C的参数方程
x=2cosθ
y=-2+2sinθ
(其中θ为参数).
(Ⅰ)将直线的极坐标方程化为直角坐标方程;
(Ⅱ)将圆的参数方程化为普通方程;
(Ⅲ)求圆C上的点到直线的距离的最小值.
分析:(Ⅰ)以极点为原点,极轴为x轴正半轴建立直角坐标系,利用和角的正弦函数,即可求得该直线的直角坐标方程;
(Ⅱ)利用三角函数的同角关系式中的平方关系,消去圆C的参数方程中的参数,即可得圆C的普通方程为:x2+(y+2)2=4,
(III)求出圆心C(0,-2)到直线x+y-1=0的距离,即可得到圆C上的点到直线的距离的最小值.
解答:解:(Ⅰ)极点为直角坐标原点O,ρsin(θ+
π
4
)=ρ(
2
2
sinθ+
2
2
cosθ)=
2
2

所以ρsinθ+ρcosθ=1,可化为直角坐标方程:x+y-1=0.…(3分)
(Ⅱ)将圆的参数方程化为普通方程:x2+(y+2)2=4.…(6分)
(Ⅲ)因为圆心为C(0,-2),
所以点C到直线的距离为d=
|0-2-1|
2
=
3
2
=
3
2
2

所以圆上的点到直线距离的最小值为
3
2
-4
2
.…(8分)
点评:本题考查极坐标方程与直角坐标方程,参数方程与普通方程的互化,考查点线距离公式的运用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线的极坐标方程为ρsin(θ+
π
4
)=
2
2
,圆M的参数方程为
x=2cosθ
y=-2+2sinθ
(其中θ为参数).
(Ⅰ)将直线的极坐标方程化为直角坐标方程;
(Ⅱ)求圆M上的点到直线的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)若点A(a,b)(其中a≠b)在矩阵M=
0-1
10
对应变换的作用下得到的点为B(-b,a).
(Ⅰ)求矩阵M的逆矩阵;
(Ⅱ)求曲线C:x2+y2=1在矩阵N=
0
1
2
10
所对应变换的作用下得到的新的曲线C′的方程.
(2)选修4-4:坐标系与参数方程
(Ⅰ)以直角坐标系的原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的长度单位已知直线的极坐标方程为θ=
π
4
(ρ∈R)
,它与曲线
x=2+
5
cosθ
y=1+
5
sinθ
为参数)相交于两点A和B,求|AB|;
(Ⅱ)已知极点与原点重合,极轴与x轴正半轴重合,若直线C1的极坐标方程为:ρcos(θ-
π
4
)=
2
,曲线C2的参数方程为:
x=1+cosθ
y=3+sinθ
(θ为参数),试求曲线C2关于直线C1对称的曲线的直角坐标方程.
(3)选修4-5:不等式选讲
(Ⅰ)已知函数f(x)=|x+3|,g(x)=m-2|x-11|,若2f(x)≥g(x+4)恒成立,求实数m的取值范围.
(Ⅱ)已知实数x、y、z满足2x2+3y2+6z2=a(a>0),且x+y+z的最大值是1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)(选修4-4坐标系与参数方程)
已知直线的极坐标方程为ρsin(θ+
π
4
)=
2
2
,则极点到该直线的距离是
2
2
2
2

(2)(选修4-5 不等式选讲)
已知lga+lgb=0,则满足不等式
a
a2+1
+
b
b2+1
≤λ
的实数λ的范围是
[1,+∞)
[1,+∞)

(3)(选修4-1 几何证明选讲)
如图,两个等圆⊙O与⊙O′外切,过O作⊙O′的两条切线OA,OB,A,B是切点,点C在圆O′上且不与点A,B重合,则∠ACB=
60°
60°

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•广州模拟)(《坐标系与参数方程》选做题)以平面直角坐标系的原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的长度单位.已知直线的极坐标方程为ρcosθ-ρsinθ+2=0,则它与曲线
x=sinα+cosα
y=1+sin2α
(α为参数)的交点的直角坐标是
(-1,1)
(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(注意:本小题为选做题,A,B两题选做其中一题,若都做了,则按A题答案给分)
A.当x,y满足条件|x-1|+|y+1|<1时,变量u=
x-1
y-2
的取值范围是
-
1
3
<u<
1
3
-
1
3
<u<
1
3

B.以直角坐标系的原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的长度单位.已知直线的极坐标方程为θ=
π
4
(ρ∈R),它与曲线
x=1+2cosα
y=2+2sinα
(α为参数)相交于A,B两点,则以线段AB为直径的圆的面积为
2
2

查看答案和解析>>

同步练习册答案