精英家教网 > 高中数学 > 题目详情
已知是等差数列.
(1)是否成立?呢?为什么?
(2)是否成立?据此你能得出什么结论?
是否成立?你又能得出什么结论?
(1)成立(2)成立
(1)因为,所以.同理有也成立;
(2)成立;也成立.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

等差数列{an}的公差d≠0,若n>2,则下列关系成立的是(    )
A.a1an>a2an-1B.a1an<a2an-1
C.a1an=a2an-1D.a1an≥a2an-1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设非负等差数列的公差,记为数列的前n项和,证明:
1)若,且,则
2)若

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在利用电子邮件传播病毒的例子中,如果第一轮感染的计算机数是80台,并且从第一轮起,以后各轮的每一台计算机都可以感染下一轮的20 台计算机,到第5轮可以感染到多少台计算机?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

学校餐厅每天供应500名学生用餐,每星期一有两种菜可供选择.调查资料表明,凡是在这星期一选种菜的,下星期一会有改选种菜;而选种菜的,下星期一有改选种菜.用分别表示在第个星期选的人数和选的人数,如果,求

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知一个等差数列前10项的和是310,前20项的和是1220.由这些条件能确定这个等差数列的前项和的公式吗?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知数列{an}中,a1=3,a2=6,an+2=an+1-an,则a2005=           

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=a1x+a2x2+a3x3+…+anxnn∈N*a1a2a3、……、an构成一个数列{an},满足f(1)=n2.
(1)求数列{an}的通项公式,并求
(2)证明0<f()<1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在等差数列中,已知
(1)求首项与公差,并写出通项公式;
(2)中有多少项属于区间

查看答案和解析>>

同步练习册答案