精英家教网 > 高中数学 > 题目详情
17.若a=log43,b=20.5,c=log2(sin$\frac{π}{3}$),则(  )
A.a>b>cB.a>c>bC.b>a>cD.c>b>a

分析 判断三个数与“0”,“1”的大小,推出结果即可.

解答 解:a=log43∈(0,1);
b=20.5>1;
c=log2(sin$\frac{π}{3}$)<0.
∴b>a>c.
故选:C.

点评 本题考查数值大小比较,借助中间量是常用方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C的对应边分别为a,b,c,且sinB=$\frac{3}{5}$,b=2.
(1)当A=30°时,求a的值;
(2)当a=2,且△ABC的面积为3时,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.|$\overrightarrow a|\;=2,\;\;|\overrightarrow b|\;=1$,$\overrightarrow a$与$\overrightarrow b$之间的夹角为60°,那么向量 $\overrightarrow a-4\;\overrightarrow b$的模为(  )
A.2B.2$\sqrt{3}$C.6D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设函数f(x)=x2,x∈[-1,1],可以用随机模拟方法近似计算由曲线y=f(x)及直线x=-1、x=1、y=0所围成的封闭图形的面积S.先产生两组(每组n个)各自区间内的均匀随机数x1、x2、…、xn和y1、y2、…、yn,由此得到n个点(xi,yi)(i=1,2,…,n),再数出其中满足yi≤f(xi)(i=1,2,…,n)的点数m,那么由随机模拟方法可得S的近似值为$\frac{2m}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左焦点为F(c,0),当$\overrightarrow{AB}⊥\overrightarrow{FB}$时,由b2=ac得其离心率为$\frac{{\sqrt{5}-1}}{2}$,此类椭圆称为“黄金椭圆”,类比“黄金椭圆”,在“黄金双曲线”$\frac{x^2}{{{a_1}^2}}-\frac{y^2}{{{b_1}^2}}$=1中,由b12=a1c1(c1为黄金双曲线的半焦距)可推出“黄金双曲线”的离心率为(  )
A.$\frac{{\sqrt{5}+1}}{2}$B.$\frac{{\sqrt{3}+1}}{2}$C.$\frac{{\sqrt{5}+1}}{3}$D.$\frac{{\sqrt{7}-1}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若2弧度的圆心角所对的弧长为4cm,则这个圆心角所夹的扇形的面积是(  )
A.2πcm2B.2 cm2C.4πcm2D.4 cm2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,角A、B、C所对的边分别为a、b、c,已知△ABC的面积为$\frac{{\sqrt{3}}}{12}{a^2}$,b=2,则a+$\frac{4}{a}$的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知向量$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(-1,2),若m$\overrightarrow{a}$+n$\overrightarrow{b}$与2$\overrightarrow{a}$-$\overrightarrow{b}$共线,则$\frac{m}{n}$等于(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知定义域为[1,2]的函数f(x)=2+logax(a>0,a≠1)的图象过点(2,3)
(1)求实数a的值;
(2)若g(x)=f(x)+f(x2),求函数g(x)的值域.

查看答案和解析>>

同步练习册答案