精英家教网 > 高中数学 > 题目详情
12.如图,椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左焦点为F(c,0),当$\overrightarrow{AB}⊥\overrightarrow{FB}$时,由b2=ac得其离心率为$\frac{{\sqrt{5}-1}}{2}$,此类椭圆称为“黄金椭圆”,类比“黄金椭圆”,在“黄金双曲线”$\frac{x^2}{{{a_1}^2}}-\frac{y^2}{{{b_1}^2}}$=1中,由b12=a1c1(c1为黄金双曲线的半焦距)可推出“黄金双曲线”的离心率为(  )
A.$\frac{{\sqrt{5}+1}}{2}$B.$\frac{{\sqrt{3}+1}}{2}$C.$\frac{{\sqrt{5}+1}}{3}$D.$\frac{{\sqrt{7}-1}}{2}$

分析 利用b12=a1c1,可得关于离心率的方程,即可求出“黄金双曲线”的离心率.

解答 解:∵${b_1}^2={a_1}{c_1}$,∴${c_1}^2-{a_1}^2={a_1}{c_1}$,
∴$\frac{{{c_1}^2}}{{{a_1}^2}}-1=\frac{c_1}{a_1}∴{e^2}-e-1=0$,
∴$e=\frac{{\sqrt{5}+1}}{2}$.
故选:A.

点评 本题考查“黄金双曲线”的离心率,考查新定义,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知复数z=1+i.
(1)设ω=z2+3(1-i)-4,求ω;
(2)若z2+az+b=1-i,求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知双曲线x2-$\frac{{y}^{2}}{3}$=1的左、右焦点分别为F1、F2,过F1作倾斜角为$\frac{π}{6}$的弦AB.求:
(1)AB的长;
(2)△F2AB的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.复数$\frac{(1-i)(1+i)}{i}$在复平面中所对应的点到原点的距离是(  )
A.2B.-2C.2iD.-2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ln(1+x)-x+$\frac{1-k}{k}$(k≥0).
(1)当k=2时,求曲线 y=f(x)在点(1,f(1))处的切线方程;
(2)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若a=log43,b=20.5,c=log2(sin$\frac{π}{3}$),则(  )
A.a>b>cB.a>c>bC.b>a>cD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在极坐标系中,作出下列各点:
A(3,0)、B(-3,$\frac{π}{3}$)、C(5,$\frac{2π}{3}$)、D(-2,π)、E(0,-$\frac{π}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和Sn,且an+Sn=1
(1)证明数列{an}是等比数列;
(2)若数列{bn}满足b1=1,bn+1-bn=an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.甲乙两人下棋,和棋的概率是$\frac{1}{2}$,乙获胜的概率是$\frac{1}{3}$,则甲不输的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案