精英家教网 > 高中数学 > 题目详情
3.已知双曲线x2-$\frac{{y}^{2}}{3}$=1的左、右焦点分别为F1、F2,过F1作倾斜角为$\frac{π}{6}$的弦AB.求:
(1)AB的长;
(2)△F2AB的周长.

分析 (1)求出双曲线的焦点坐标,求出直线的斜率,利用点斜式求出直线方程;将直线的方程代入双曲线的方程,利用两点的距离公式求出|AB|.
(2)求出A,B的坐标,由两点的距离,即可得到△F2AB的周长.

解答 解:(1)∵双曲线的左焦点为F1(-2,0),设A(x1,y1),B(x2,y2),
直线AB的方程可设为y=$\frac{\sqrt{3}}{3}$(x+2),代入方程x2-$\frac{{y}^{2}}{3}$=1得,8x2-4x-13=0,
∴x1+x2=$\frac{1}{2}$,x1x2=-$\frac{13}{8}$,
∴|AB|=$\sqrt{1+{k}^{2}}$|x1-x2|=$\sqrt{1+\frac{1}{3}}•\sqrt{\frac{1}{4}-4•(-\frac{13}{8})}$=3;
(2)由于F2(2,0),A($\frac{1+3\sqrt{3}}{4}$,$\frac{3+3\sqrt{3}}{4}$),B($\frac{1-3\sqrt{3}}{4}$,$\frac{3\sqrt{3}-3}{4}$),
则△F2AB的周长为|AB|+|AF2|+|BF2|=3+$\frac{3\sqrt{3}-1}{4}$+$\frac{3\sqrt{3}+1}{4}$=3+$\frac{3\sqrt{3}}{2}$.

点评 本题考查直线与双曲线的位置关系,考查双曲线的定义,考查学生分析解决问题的能力,属于中档题.解决直线与圆锥曲线的弦长问题常将直线的方程与圆锥曲线方程联立,利用弦长公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.四位外宾参观某校,需配备两名安保人员.六人依次进入校门,为安全起见,首尾一定是两名安保人员,则六人的入门顺序共有48种不同的安排方案(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知等差数列{an}的前n项和为Sn,S4≥10,S5≤15,则a5的最大值是5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知an=$\frac{8}{6-{a}_{n-1}}$,a1=$\frac{4}{3}$,求证:{$\frac{{a}_{n}-2}{{a}_{n}-4}$}为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.25人排成5×5方阵,现从中选3人,要求3人不在同一行也不在同一列,不同的选法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.|$\overrightarrow a|\;=2,\;\;|\overrightarrow b|\;=1$,$\overrightarrow a$与$\overrightarrow b$之间的夹角为60°,那么向量 $\overrightarrow a-4\;\overrightarrow b$的模为(  )
A.2B.2$\sqrt{3}$C.6D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x-x2
(1)求x<0时,f(x)的解析式;
(2)试作出f(x)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左焦点为F(c,0),当$\overrightarrow{AB}⊥\overrightarrow{FB}$时,由b2=ac得其离心率为$\frac{{\sqrt{5}-1}}{2}$,此类椭圆称为“黄金椭圆”,类比“黄金椭圆”,在“黄金双曲线”$\frac{x^2}{{{a_1}^2}}-\frac{y^2}{{{b_1}^2}}$=1中,由b12=a1c1(c1为黄金双曲线的半焦距)可推出“黄金双曲线”的离心率为(  )
A.$\frac{{\sqrt{5}+1}}{2}$B.$\frac{{\sqrt{3}+1}}{2}$C.$\frac{{\sqrt{5}+1}}{3}$D.$\frac{{\sqrt{7}-1}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在△ABC中,P是BC边中点,若$|{\overrightarrow{AB}}|\overrightarrow{AC}+|{\overrightarrow{BC}}|\overrightarrow{PA}+|{\overrightarrow{AC}}|\overrightarrow{PB}=\overrightarrow 0$,则△ABC的形状是(  )
A.等边三角形B.直角三角形
C.等腰直角三角形D.等腰三角形但不一定是等边三角形

查看答案和解析>>

同步练习册答案