精英家教网 > 高中数学 > 题目详情
18.已知$a={2^{2.1}},b={(\frac{1}{2})^{-\frac{1}{2}}},c={log_5}$4,则a,b,c的大小关系为(  )
A.b<c<aB.c<a<bC.b<a<cD.c<b<a

分析 利用指数函数与对数函数的单调性即可得出.

解答 解:∵a>22=4,$b={2}^{-1×(-\frac{1}{2})}$=$\sqrt{2}$∈(1,2),c<1.
∴a>b>c.
故选:D.

点评 本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知复数z=$\frac{1-2i}{2+i}$,其中i为虚数单位,则复数z的虚部为(  )
A.-1B.1C.-iD.i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.下表数据为某地区某种农产品的年产量x(单位:吨)及对应销售价格y(单位:千元/吨).
x12345
y7065553822
(1)若y与x有较强的线性相关关系,根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)若每吨该农产品的成本为13.1千元,假设该农产品可全部卖出,预测当年产量为多少吨时,年利润Z最大?
参考公式:$\left\{\begin{array}{l}{\widehat{b}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}}\\{\widehat{a}=\overline{y}-\widehat{b}\overline{x}}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=$\frac{1}{2}$x2+lnx-mx(m>0)
(1)求f(x)的单调区间;
(2)证明:曲线y=f(x)不存在经过原点的切线.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若xlog32=1,则2x+2-x=$\frac{10}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=loga(1+x)-loga(1-x)(a>0,且a≠1).
(Ⅰ)写出函数f(x)的定义域,判断f(x)奇偶性,并证明;
(Ⅱ)当0<a<1时,解不等式f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知x为实数,则“$\frac{1}{x}<1$”是“x>1”的(  )
A.充分非必要条件B.充要条件
C.必要非充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知p:x2+mx+1=0有两个不相等的负实根,q:方程4x2+4(m-2)x+1=0无实根,若p∧q为假,p∨q为真求:m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知f(x)=$\left\{\begin{array}{l}{x^2}-131,x>10\\ f(f(x+2)),x≤10\end{array}\right.$,则f(8)的值为(  )
A.13B.-67C.1313D.-6767

查看答案和解析>>

同步练习册答案