精英家教网 > 高中数学 > 题目详情
14.函数y=xsinx+$\sqrt{x}$$+\frac{2}{{x}^{2}}$的导数是sinx+xcosx+$\frac{1}{2\sqrt{x}}-\frac{4}{{x}^{3}}$.

分析 直接利用基本初等函数的导数公式及导数的运算法则化简求值.

解答 解:∵y=xsinx+$\sqrt{x}$$+\frac{2}{{x}^{2}}$,
∴y′=$(xsinx)′+(\sqrt{x})′+(\frac{2}{{x}^{2}})′$
=sinx+xcosx+$\frac{1}{2}{x}^{-\frac{1}{2}}$+$\frac{-4x}{{x}^{4}}$
=sinx+xcosx+$\frac{1}{2\sqrt{x}}-\frac{4}{{x}^{3}}$.
故答案为:sinx+xcosx+$\frac{1}{2\sqrt{x}}-\frac{4}{{x}^{3}}$.

点评 本题考查导数的运算,关键是熟记基本初等函数的导数公式及导数的运算法则,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{2ax}{2x+1}$-ln(2x+1)(a≠0).
(1)求函数f(x)的单调区间;
(2)当a=e时,若函数y=f(x)-k在x∈[0,1]上有唯一零点,求实数k的取值范围;
(3)求证:ln$\frac{{e}^{2}}{2x+1}$≤$\frac{e}{2x+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知平面向量$\overrightarrow{AB}$=(1,2),$\overrightarrow{AC}$=(-1,3),则向量$\overrightarrow{AB}$与$\overrightarrow{BC}$的夹角的余弦值为(  )
A.$-\frac{1}{3}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知等比数列{an}的前n项和为Sn,a1=1,S6=9S3.求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知a=log32,则log316+$\frac{1}{3}$log324=5a+$\frac{1}{3}$.(用a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若命题p:$\frac{x}{x-1}$<0,命题q:x2<2x,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知全集U={1,2,3,4,5},集合A={1,3,5},B={3,4,5},则集合∁U(A∪B)={2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知an=3n-1,则数列{$\frac{1}{{{a}_{n}a}_{n+1}}$}的前n项和为Sn=$\frac{1}{2}•\frac{n}{3n+2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若函数f(x)=logax(a>0,a≠1)满足f($\frac{3}{a}$)>f($\frac{5}{a}$),则f(1-$\frac{1}{x}$)>1的解集是($1,\frac{1}{1-a}$).

查看答案和解析>>

同步练习册答案