精英家教网 > 高中数学 > 题目详情
19.已知关于x的一元二次方程x2+ax+1=0,分别求满足下列条件下的实数a的取值范围.
(1)两根均大于-1;
(2)一个根大于-1,另一个根小于-1;
(3)两个根均在(-1,2)内.

分析 由二次函数的性质,结合二次函数的图象,依次对其分析.

解答 解:令f(x)=x2+ax+1,则
(1)两根均大于-1,等价于$\left\{\begin{array}{l}{△={a}^{2}-4≥0}\\{-\frac{a}{2}>-1}\\{f(-1)>0}\end{array}\right.$,∴a<-2;
(2)一个根大于-1,另一个根小于-1,等价于f(-1)<0,即1-a+1<0,∴a>2;
(3)两个根均在(-1,2)内,等价于$\left\{\begin{array}{l}{△={a}^{2}-4≥0}\\{-1<-\frac{a}{2}<2}\\{f(-1)>0}\\{f(2)>0}\end{array}\right.$,∴-2.5<a<-2.

点评 本题考查了二次函数的图象特征及二次函数与二次方程之间的联系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x2-(a+1)x+a.
(1)试求不等式f(x)<0的解集;
(2)若函数f(x)=x2-(a+1)x+a的图象在直线ax-y-2=0的上方,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,角A,B,C的对边分别为a,b,c,且满足2bcos($\frac{π}{3}$-C)=a+c
(1)求角B的大小;
(2)若D点为BC中点,且AD=AC=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.$\frac{1}{0!n!}$+$\frac{1}{1!(n-1)!}$+$\frac{1}{2!(n-2)!}$+…+$\frac{1}{n!0!}$=$\frac{{2}^{n}}{n!}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设集合P={x|x=$\frac{k}{3}$+$\frac{1}{6}$,k∈Z},Q={x|x=$\frac{k}{6}$+$\frac{1}{3}$,k∈Z},则(  )
A.P=QB.P?QC.P?QD.P∩Q=∅

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\sqrt{3}$sinx+3cosx=$\frac{3\sqrt{3}}{2}$,则tan($\frac{7π}{6}$-x)等于(  )
A.±$\frac{\sqrt{7}}{3}$B.$±\frac{3}{4}$C.±$\frac{\sqrt{7}}{4}$D.$±\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=(x+1)ln(x+1)-ax2-2ax(a∈R),它的导函数为f′(x).
(Ⅰ)若函数g(x)=f′(x)+(2a-1)x只有一个零点,求a的值;
(Ⅱ)是否存在实数a,使得关于x的不等式f(x)<0在(0,+∞)上恒成立?若存在,求a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,($\frac{{\overrightarrow{AB}}}{{|{\overrightarrow{AB}}|}}$+$\frac{{\overrightarrow{AC}}}{{|{\overrightarrow{AC}}|}}$)•($\overrightarrow{AB}$-$\overrightarrow{AC}$)=0,|${\overrightarrow{AB}$+$\overrightarrow{AC}}$|=3,A∈[$\frac{π}{3}$,$\frac{5π}{6}$],则求$\overrightarrow{AB}$•$\overrightarrow{AC}$的最大值为(  )
A.3B.1C.$\frac{3}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数y=x2-4x+1的图象与x轴交点的横坐标分别为x1,x2,则(  )
A.x1+x2=4B.x1x2=-2C.x1+x2=-4D.x1x2=2

查看答案和解析>>

同步练习册答案