精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=x2-(a+1)x+a.
(1)试求不等式f(x)<0的解集;
(2)若函数f(x)=x2-(a+1)x+a的图象在直线ax-y-2=0的上方,求实数a的取值范围.

分析 (1)将f(x)因式分解,对a进行分类讨论,由此得到解集.
(2)由函数图象在上方,得到作差恒大于0,由此得判别式是恒小于0的,得到a的取值范围.

解答 解:(1)∵函数f(x)=x2-(a+1)x+a=(x-a)(x-1)
①a<1时,不等式f(x)<0的解集是{x|a<x<1}
②a=1时,不等式f(x)<0的解集是∅
③a>1时,不等式f(x)<0的解集是{x|1<x<a}.
(2)∵函数f(x)=x2-(a+1)x+a的图象在直线ax-y-2=0的上方
∴x2-(a+1)x+a-(ax-2)>0恒成立
即x2-(2a+1)x+a+2>0
∴△<0恒成立
即-$\frac{\sqrt{7}}{2}$<a<$\frac{\sqrt{7}}{2}$

点评 本题考查二次函数的因式分解,分类讨论,数形结合,作差恒大于0,得判别式是恒小于0的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.函数y=cos(x+$\frac{π}{2}$)的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C的中心在坐标原点O上,短轴的端点坐标为(0,1),(0,-1),离心率是$\frac{{\sqrt{3}}}{2}$.
(Ⅰ)求椭圆C标准方程;
(Ⅱ)直线l过点M(-1,0)且与椭圆C交于P,Q两点,若PQ为直径的圆经过原点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设α∈($\frac{π}{2}$,π),函数f(x)=(sinα)${\;}^{{x}^{2}-2x+3}$的最大值为$\frac{1}{4}$,则α=$\frac{5π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知复数z=$\frac{{{i^{2016}}}}{1-i}$,则复数$\overline z$在复平面上对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)为(0,+∞)上的增函数,若f(a2-a)>f(a+3),则实数a的取值范围为-3<a<-1或a>3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系xOy中,已知A、B分别是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的上、下顶点,点M(0,$\frac{1}{2}$)为线段AO的中点,AB=$\sqrt{2}$a.
(1)求椭圆的方程;
(2)设N(t,2)(t≠0),直线NA,NB分别交椭圆于点P,Q,直线NA,NB,PQ的斜率分别为k1,k2,k3
①求证:P,M,Q三点共线;
②求证:k1k3+k2k3-k1k2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=f(x)是定义在R上的增函数,点P(3,1)在y=f(x)的图象上,且函数y=f(x-2012)的图象关于点(2012,0)对称,则不等式|f(x+1)|<1的解集是(-4,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知关于x的一元二次方程x2+ax+1=0,分别求满足下列条件下的实数a的取值范围.
(1)两根均大于-1;
(2)一个根大于-1,另一个根小于-1;
(3)两个根均在(-1,2)内.

查看答案和解析>>

同步练习册答案