1£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªA¡¢B·Ö±ðÊÇÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÉÏ¡¢Ï¶¥µã£¬µãM£¨0£¬$\frac{1}{2}$£©ÎªÏß¶ÎAOµÄÖе㣬AB=$\sqrt{2}$a£®
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©ÉèN£¨t£¬2£©£¨t¡Ù0£©£¬Ö±ÏßNA£¬NB·Ö±ð½»ÍÖÔ²ÓÚµãP£¬Q£¬Ö±ÏßNA£¬NB£¬PQµÄбÂÊ·Ö±ðΪk1£¬k2£¬k3£®
¢ÙÇóÖ¤£ºP£¬M£¬QÈýµã¹²Ïߣ»
¢ÚÇóÖ¤£ºk1k3+k2k3-k1k2Ϊ¶¨Öµ£®

·ÖÎö £¨1£©ÓÉÌâÒâÖª2b=4£¨b-$\frac{1}{2}$£©=$\sqrt{2}a$£¬ÓÉ´ËÄÜÇó³öÍÖÔ²µÄ·½³Ì£®
£¨2£©¢ÙÓÉN£¨t£¬2£©£¬A£¨0£¬1£©£¬B£¨0£¬-1£©£¬µÃÖ±ÏßNAµÄ·½³ÌΪy=$\frac{1}{t}x+1$£¬Ö±ÏßNBµÄ·½³ÌΪ$y=\frac{3}{t}x-1$£¬ÁªÁ¢·½³Ì×éÇó³öP£¨-$\frac{4t}{{t}^{2}+2}$£¬$\frac{{t}^{2}-2}{{t}^{2}+2}$£©£¬Q£¨$\frac{12t}{{t}^{2}+18}$£¬$\frac{18-{t}^{2}}{{t}^{2}+18}$£©£¬´Ó¶økPM=kQM£¬ÓÉ´ËÄÜÖ¤Ã÷P£¬M£¬QÈýµã¹²Ïߣ®
¢ÚÓÉ${k}_{1}=\frac{1}{t}$£¬${k}_{2}=\frac{1}{3t}$£¬${k}_{3}=\frac{6-{t}^{2}}{8t}$£¬ÄÜÖ¤Ã÷k1k3+k2k3-k1k2Ϊ¶¨Öµ£®

½â´ð ½â£º£¨1£©¡ßA¡¢B·Ö±ðÊÇÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÉÏ¡¢Ï¶¥µã£¬µãM£¨0£¬$\frac{1}{2}$£©ÎªÏß¶ÎAOµÄÖе㣬AB=$\sqrt{2}$a£¬
¡àÓÉÌâÒâÖª2b=4£¨b-$\frac{1}{2}$£©=$\sqrt{2}a$£¬
½âµÃa=$\sqrt{2}$£¬b=1£¬
¡àÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{2}+{y}^{2}=1$£®
Ö¤Ã÷£º£¨2£©¢ÙÓÉN£¨t£¬2£©£¬A£¨0£¬1£©£¬B£¨0£¬-1£©£¬
µÃÖ±ÏßNAµÄ·½³ÌΪy=$\frac{1}{t}x+1$£¬
Ö±ÏßNBµÄ·½³ÌΪ$y=\frac{3}{t}x-1$£¬
ÓÉ$\left\{\begin{array}{l}{y=\frac{1}{t}x+1}\\{{x}^{2}+2{y}^{2}=2}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x=-\frac{4t}{{t}^{2}+2}}\\{y=\frac{{t}^{2}-2}{{t}^{2}+2}}\end{array}\right.$£¬¡àP£¨-$\frac{4t}{{t}^{2}+2}$£¬$\frac{{t}^{2}-2}{{t}^{2}+2}$£©£¬
ÓÉ$\left\{\begin{array}{l}{y=\frac{3}{t}x-1}\\{{x}^{2}+2{y}^{2}=2}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x=\frac{12t}{{t}^{2}+18}}\\{y=\frac{18-{t}^{2}}{{t}^{2}+18}}\end{array}\right.$£¬¡àQ£¨$\frac{12t}{{t}^{2}+18}$£¬$\frac{18-{t}^{2}}{{t}^{2}+18}$£©£¬
Ö±ÏßPMµÄбÂÊkPM=$\frac{\frac{{t}^{2}-2}{{t}^{2}+2}-\frac{1}{2}}{-\frac{4t}{{t}^{2}+2}}$=$\frac{6-{t}^{2}}{8t}$£¬
Ö±ÏßQMµÄбÂÊkQM=$\frac{\frac{18-{t}^{2}}{{t}^{2}+18}-\frac{1}{2}}{\frac{12t}{{t}^{2}+18}}$=$\frac{6-{t}^{2}}{8t}$£¬
¡àkPM=kQM£¬¡àP£¬M£¬QÈýµã¹²Ïߣ®
¢ÚÓÉ¢ÙÖª£º${k}_{1}=\frac{1}{t}$£¬${k}_{2}=\frac{1}{3t}$£¬${k}_{3}=\frac{6-{t}^{2}}{8t}$£¬
¡àk1k3+k2k3-k1k2=$\frac{4}{t}¡Á\frac{6-{t}^{2}}{8t}$-$\frac{3}{{t}^{2}}$=-$\frac{1}{2}$£®
¡àk1k3+k2k3-k1k2Ϊ¶¨Öµ-$\frac{1}{2}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÈýµã¹²ÏßµÄÖ¤Ã÷£¬¿¼²é´úÊýʽµÄºÍΪ¶¨ÖµµÄÖ¤Ã÷£¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÍÖÔ²ÐÔÖÊ¡¢Ö±Ïß·½³ÌµÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Å×ÎïÏßx2=8yµÄ½¹µãFµÄ×ø±êÊÇ£¨¡¡¡¡£©
A£®£¨0£¬2£©B£®£¨2£¬0£©C£®£¨0£¬-2£©D£®£¨-2£¬0£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®º¯Êýf£¨x£©=Asin¦Øx£¨A£¾0£¬¦Ø£¾0£©µÄ²¿·ÖͼÏóÈçͼËùʾ£¬f£¨1£©+f£¨2£©+f£¨3£©+¡­+f£¨2016£©µÄֵΪ£¨¡¡¡¡£©
A£®0B£®3$\sqrt{2}$C£®6$\sqrt{2}$D£®-$\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªº¯Êýf£¨x£©=x2-£¨a+1£©x+a£®
£¨1£©ÊÔÇó²»µÈʽf£¨x£©£¼0µÄ½â¼¯£»
£¨2£©Èôº¯Êýf£¨x£©=x2-£¨a+1£©x+aµÄͼÏóÔÚÖ±Ïßax-y-2=0µÄÉÏ·½£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÓÃϵͳ³éÑùµÄ·½·¨´Ó480ÃûѧÉúÖгéÈ¡ÈÝÁ¿Îª20µÄÑù±¾£¬½«480ÃûѧÉúËæ»úµØ±àºÅΪ1¡«480£®°´±àºÅ˳Ðòƽ¾ù·ÖΪ20¸ö×飨1¡«24ºÅ£¬25¡«48ºÅ£¬¡­£¬457¡«480ºÅ£©£¬ÈôµÚ1×éÓóéÇ©µÄ·½·¨È·¶¨³é³öµÄºÅÂëΪ3£¬ÔòµÚ4×é³éÈ¡µÄºÅÂëΪ75£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªÔ²ºÍÖ±Ïߵķ½³ÌÈçͼËùʾ£¬ÇëÓò»µÈʽ±íʾͼÖÐÒõÓ°²¿·ÖËùʾµÄÆ½ÃæÇøÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®cos40¡ãsin80¡ã+sin40¡ãsin10¡ã=£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®$-\frac{\sqrt{3}}{2}$C£®cos50¡ãD£®$\frac{\sqrt{3}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬ÇÒÂú×ã2bcos£¨$\frac{¦Ð}{3}$-C£©=a+c
£¨1£©Çó½ÇBµÄ´óС£»
£¨2£©ÈôDµãΪBCÖе㣬ÇÒAD=AC=2£¬Çó¡÷ABCµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªº¯Êýf£¨x£©=£¨x+1£©ln£¨x+1£©-ax2-2ax£¨a¡ÊR£©£¬ËüµÄµ¼º¯ÊýΪf¡ä£¨x£©£®
£¨¢ñ£©Èôº¯Êýg£¨x£©=f¡ä£¨x£©+£¨2a-1£©xÖ»ÓÐÒ»¸öÁãµã£¬ÇóaµÄÖµ£»
£¨¢ò£©ÊÇ·ñ´æÔÚʵÊýa£¬Ê¹µÃ¹ØÓÚxµÄ²»µÈʽf£¨x£©£¼0ÔÚ£¨0£¬+¡Þ£©ÉϺã³ÉÁ¢£¿Èô´æÔÚ£¬ÇóaµÄȡֵ·¶Î§£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸