·ÖÎö £¨1£©ÓÉÌâÒâÖª2b=4£¨b-$\frac{1}{2}$£©=$\sqrt{2}a$£¬ÓÉ´ËÄÜÇó³öÍÖÔ²µÄ·½³Ì£®
£¨2£©¢ÙÓÉN£¨t£¬2£©£¬A£¨0£¬1£©£¬B£¨0£¬-1£©£¬µÃÖ±ÏßNAµÄ·½³ÌΪy=$\frac{1}{t}x+1$£¬Ö±ÏßNBµÄ·½³ÌΪ$y=\frac{3}{t}x-1$£¬ÁªÁ¢·½³Ì×éÇó³öP£¨-$\frac{4t}{{t}^{2}+2}$£¬$\frac{{t}^{2}-2}{{t}^{2}+2}$£©£¬Q£¨$\frac{12t}{{t}^{2}+18}$£¬$\frac{18-{t}^{2}}{{t}^{2}+18}$£©£¬´Ó¶økPM=kQM£¬ÓÉ´ËÄÜÖ¤Ã÷P£¬M£¬QÈýµã¹²Ïߣ®
¢ÚÓÉ${k}_{1}=\frac{1}{t}$£¬${k}_{2}=\frac{1}{3t}$£¬${k}_{3}=\frac{6-{t}^{2}}{8t}$£¬ÄÜÖ¤Ã÷k1k3+k2k3-k1k2Ϊ¶¨Öµ£®
½â´ð ½â£º£¨1£©¡ßA¡¢B·Ö±ðÊÇÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÉÏ¡¢Ï¶¥µã£¬µãM£¨0£¬$\frac{1}{2}$£©ÎªÏß¶ÎAOµÄÖе㣬AB=$\sqrt{2}$a£¬
¡àÓÉÌâÒâÖª2b=4£¨b-$\frac{1}{2}$£©=$\sqrt{2}a$£¬
½âµÃa=$\sqrt{2}$£¬b=1£¬
¡àÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{2}+{y}^{2}=1$£®
Ö¤Ã÷£º£¨2£©¢ÙÓÉN£¨t£¬2£©£¬A£¨0£¬1£©£¬B£¨0£¬-1£©£¬
µÃÖ±ÏßNAµÄ·½³ÌΪy=$\frac{1}{t}x+1$£¬
Ö±ÏßNBµÄ·½³ÌΪ$y=\frac{3}{t}x-1$£¬
ÓÉ$\left\{\begin{array}{l}{y=\frac{1}{t}x+1}\\{{x}^{2}+2{y}^{2}=2}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x=-\frac{4t}{{t}^{2}+2}}\\{y=\frac{{t}^{2}-2}{{t}^{2}+2}}\end{array}\right.$£¬¡àP£¨-$\frac{4t}{{t}^{2}+2}$£¬$\frac{{t}^{2}-2}{{t}^{2}+2}$£©£¬
ÓÉ$\left\{\begin{array}{l}{y=\frac{3}{t}x-1}\\{{x}^{2}+2{y}^{2}=2}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x=\frac{12t}{{t}^{2}+18}}\\{y=\frac{18-{t}^{2}}{{t}^{2}+18}}\end{array}\right.$£¬¡àQ£¨$\frac{12t}{{t}^{2}+18}$£¬$\frac{18-{t}^{2}}{{t}^{2}+18}$£©£¬
Ö±ÏßPMµÄбÂÊkPM=$\frac{\frac{{t}^{2}-2}{{t}^{2}+2}-\frac{1}{2}}{-\frac{4t}{{t}^{2}+2}}$=$\frac{6-{t}^{2}}{8t}$£¬
Ö±ÏßQMµÄбÂÊkQM=$\frac{\frac{18-{t}^{2}}{{t}^{2}+18}-\frac{1}{2}}{\frac{12t}{{t}^{2}+18}}$=$\frac{6-{t}^{2}}{8t}$£¬
¡àkPM=kQM£¬¡àP£¬M£¬QÈýµã¹²Ïߣ®
¢ÚÓÉ¢ÙÖª£º${k}_{1}=\frac{1}{t}$£¬${k}_{2}=\frac{1}{3t}$£¬${k}_{3}=\frac{6-{t}^{2}}{8t}$£¬
¡àk1k3+k2k3-k1k2=$\frac{4}{t}¡Á\frac{6-{t}^{2}}{8t}$-$\frac{3}{{t}^{2}}$=-$\frac{1}{2}$£®
¡àk1k3+k2k3-k1k2Ϊ¶¨Öµ-$\frac{1}{2}$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÈýµã¹²ÏßµÄÖ¤Ã÷£¬¿¼²é´úÊýʽµÄºÍΪ¶¨ÖµµÄÖ¤Ã÷£¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÍÖÔ²ÐÔÖÊ¡¢Ö±Ïß·½³ÌµÄºÏÀíÔËÓã®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨0£¬2£© | B£® | £¨2£¬0£© | C£® | £¨0£¬-2£© | D£® | £¨-2£¬0£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 0 | B£® | 3$\sqrt{2}$ | C£® | 6$\sqrt{2}$ | D£® | -$\sqrt{2}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{1}{2}$ | B£® | $-\frac{\sqrt{3}}{2}$ | C£® | cos50¡ã | D£® | $\frac{\sqrt{3}}{2}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com