分析 由条件根据正弦函数的周期性求得ω的值,再根据正弦函数的奇偶性、函数y=Asin(ωx+φ)的图象变换规律,求得φ的值.
解答 解:由题意可得T=$\frac{2π}{ω}$=π,∴ω=2,函数f(x)=sin(2x+φ).
其图象向右平移$\frac{π}{3}$个单位后得到的函数的解析式为y=sin[2x-$\frac{π}{3}$)+φ]=sin(2x+φ-$\frac{2π}{3}$),
根据所得函数为偶函数,可得φ-$\frac{2π}{3}$=kπ+$\frac{π}{2}$,k∈z,即 φ═kπ+$\frac{7π}{6}$,k∈z.
结合|φ|<$\frac{π}{2}$,可得φ=$\frac{π}{6}$,
故答案为:$\frac{π}{6}$.
点评 本题主要考查正弦函数的图象,正弦函数的周期性和奇偶性,函数y=Asin(ωx+φ)的图象变换规律,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{21}{13}$ | B. | $\frac{13}{21}$ | C. | $\frac{21}{34}$ | D. | $\frac{34}{21}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{25}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com