精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=$\frac{x}{x+1}$,若数列{an}(n∈N*)满足:a1=1,an+1=f(an
(1)设bn=$\frac{1}{{a}_{n}}$,求证数列{bn}是等差数列;
(2)求数列{an}的通项公式.

分析 (1)根据题意可知,an+1an+an+1=an,即$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=1,数列{$\frac{1}{{a}_{n}}$}是以1为首项,以1为公差的等差数列,所以数列{bn}是以1为首项,以1为公差的等差数列;
(2)由(1)数列{$\frac{1}{{a}_{n}}$}是以1为首项,以1为公差的等差数列,即可求出答案.

解答 (1)证明:∵f(x)=$\frac{x}{x+1}$,a1=1,an+1=f(an),
∴an+1=$\frac{{a}_{n}}{{a}_{n}+1}$,
∴an+1an+an+1=an
∴$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=1,
∵a1=1,
∴$\frac{1}{{a}_{1}}$=1,
∴数列{$\frac{1}{{a}_{n}}$}是以1为首项,以1为公差的等差数列,
∵bn=$\frac{1}{{a}_{n}}$,
∴数列{bn}是以1为首项,以1为公差的等差数列;
(2)解:由(1)知,$\frac{1}{{a}_{n}}$=1+(n-1)=n,
∴an=$\frac{1}{n}$.

点评 本题考查等差数列的证明,考查数列的通项公式,解题时要认真审题,仔细解答,注意合理地进行等价转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的两条渐近线与抛物线D:y2=2px(p>0)的准线分别交于A,B两点,O为坐标原点,双曲线的离心率为$\frac{2\sqrt{3}}{3}$,△ABO的面积为2$\sqrt{3}$.
(Ⅰ)求双曲线C的渐近线方程;
(Ⅱ)求p的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.从2015名学生中选50人组成参观团,先用简单随机抽样方法剔除15人,再将其余2000人从0到1999编号,按等距系统抽样方法选取,若第一组采用抽签法抽到的号码是30,则最后一组入选的号码是(  )
A.1990B.1991C.1989D.1988

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求值
(1)${log}_{3}{3}^{\frac{3}{2}}$+lg25+lg4+${7}^{{log}_{7}2}+{(-9.8)}^{0}$
(2)$\sqrt{\frac{25}{4}}$-${(\frac{27}{8})}^{\frac{1}{3}}$+${(\frac{1}{64})}^{-\frac{2}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设方程|x2+3x-3|=a的解的个数为m,则m不可能等于(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若在框图中输入的a,b分别为30、18,则输出的a为(  )
A.0B.2C.6D.14

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求椭圆$\left\{\begin{array}{l}{x=4cosθ+1}\\{y=3sinθ}\end{array}\right.$(θ为参数)的左焦点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某市对该市高三年级的教学质量进行了一次检测,某校共有720名学生参加了本次考试,考试结束后,统计了学生在数学考试中,选择选做题A,B,C三题(三道题中必须且只能选一题作答)的答卷份数如表:
题号ABC
答卷份数160240320
该校高三数学备课组为了解参加测试的学生对这三题的答题情况,现用分层抽样的方法从720份答卷中抽出9份进行分析.
(Ⅰ)若从选出的9份答卷中抽出3份,求这3份中至少有1份选择A题作答的概率;
(Ⅱ)若从选出的9份答卷中抽出3份,记其中选择C题作答的份数为X,求X的分布列及其数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设Sn是数列{an}的前n项和,且a1=-2,an+1=-$\frac{{S}_{n}^{2}}{1+{S}_{n}}$,n∈N*,则Sn=$\frac{2}{2n-3}$.

查看答案和解析>>

同步练习册答案