精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)=ax2+bx(a≠0),f(2)=0且方程f(x)=x有两个相等的实数根.
(1)求f(x)的解析式;
(2)求f(x)的最大值.
考点:二次函数的性质,函数解析式的求解及常用方法
专题:函数的性质及应用
分析:(1)由f(2)=0,且f(x)=x有两个相等的实数根,求出a、b的值,从而得f(x)的解析式;(2)通过配方法求出函数的最大值.
解答: 解:(1)∵f(2)=0,∴4a+2b=0①;
又方程f(x)=x有两个相等的实数根,
即ax2+(b-1)x=0有两个相等的实数根,
∴(b-1)2=0②;
由①②可得,a=-
1
2
,b=1,
∴f(x)=-
1
2
x2+x;
(2)∵f(x)=-
1
2
x2+x
=-
1
2
(x-1)2+
1
2

∴当x=1时,f(x)有最大值
1
2
点评:本题考查了求函数的解析式以及利用函数的图象与性质求最值,从而得值域的问题,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知△ABC中,D为BC边上的中点,则下列等式中正确的是(  )
A、
AB
-
AC
=
BC
B、
AB
+
AC
=
AD
C、
AB
+
AC
+
BC
=
0
D、
AB
+
AC
=2
AD

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是一次函数,f(8)=15,f(2),f(5),f(14)成等比数列,令Sn=f(1)+f(2)+f(3)+…+f(n),则Sn等于(  )
A、n2
B、n2-n
C、n2+n
D、以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=-x2+2x+3(0≤x≤3)的最大值为m,最小值为n,当角α的终边经过点P(m,n-1)时,求sinα+cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知2x≤(
1
4
x-3
(1)求此不等式的解集
(2)求函数y=ax2-6x(a>0,且a≠1)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角A∈(
π
2
,π),且sinA、cosA是一元二次方程25x2-5x+m=0的两个实根.
(1)求实数m的值;
(2)求M=sin2AtanA+
cos2A
tanA
-
1-sinA-cosA
sinAcosA
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B都是锐角,且A+B≠
π
2
,(1+tanA)(1+tanB)=2,求证:A+B=
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(
x
+
1
3
x
n的展开式中偶数项二项式系数和比(1+x)2n展开式中奇数项二项式系数和小120,求:
(Ⅰ)(1+x)2n展开式中二项式系数最大的项;
(Ⅱ)设(
x
+
1
3
x
n展开式中的常数项为p,展开式中所有项系数的和为q,求p+q.

查看答案和解析>>

科目:高中数学 来源: 题型:

在对人们的休闲方式的一次调查中,共调查了120人,其中女性70人,男性50人.女性中有45人主要的休闲方式是看电视,另外25人主要的休闲方式是运动;男性中有20人主要的休闲方式是看电视,另外30人主要的休闲方式是运动.
(1)根据以上数据建立一个2×2的列联表;
(2)判断性别与休闲方式是否有关系.

查看答案和解析>>

同步练习册答案