精英家教网 > 高中数学 > 题目详情
17.设等比数列{an}的公比q=$\frac{1}{2}$,前n项和为Sn,则$\frac{{S}_{3}}{{a}_{3}}$=(  )
A.5B.7C.8D.15

分析 利用等比数列的通项公式与前n项和公式即可得出.

解答 解:S3=$\frac{{a}_{1}(1-\frac{1}{{2}^{3}})}{1-\frac{1}{2}}$=$\frac{7}{4}{a}_{1}$,a3=${a}_{1}(\frac{1}{2})^{2}$=$\frac{1}{4}{a}_{1}$,
∴$\frac{{S}_{3}}{{a}_{3}}$=7.
故选:B.

点评 本题考查了等比数列的通项公式与前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.实验人员获取一组数据如表:则拟合效果最接近的一个为(  )
x1.99345.16.12
y1.54.047.51218.01
A.y=2x-2B.y=$\frac{1}{2}$(x2-1)C.y=log2xD.y=${(\frac{1}{2})^x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知$\overrightarrow{a}$=(3,-4),$\overrightarrow{b}$=(2,x),$\overrightarrow{c}$=(2,y),且$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{a}$⊥$\overrightarrow{c}$,求:
(1)$\overrightarrow{b}$•$\overrightarrow{c}$;       
(2)$\overrightarrow{b}$、$\overrightarrow{c}$的夹角;   
(3)|$\overrightarrow{b}$+$\overrightarrow{c}$|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.甲乙两人进行围棋比赛,每一局2人获胜的概率相等,谁先赢得规定的局数就获胜.
(Ⅰ)若甲还需n局,乙还需3局才能获胜(n>3),求甲获胜的概率;
(Ⅱ)若规定连胜两局者获胜,比赛完5局仍未出现连胜,则约定获胜局数多者获胜,记比赛总局数为X,求X的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合P={x|-1<x<b,b∈N},Q={x|x2-3x<0,x∈Z},若P∩Q≠∅,则b的最小值等于(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知AD为半圆O的直径,AB为半圆O的切线,割线BMN交AD的延长线于点C,且BM=MN=NC,AB=2$\sqrt{2}$.
(Ⅰ)求圆心O到割线BMN的距离;
(Ⅱ)求CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某种鲜花进价每束2.5元,售价每束5元,若卖不出,则以每束1.6元的价格处理掉,某节日鲜花的需求量X(单位:束)的分布列为
X200300400500
P0.200.350.300.15
(Ⅰ)若进鲜花400束,是写出销售量S(单位:束)的分布列,并求利润Y的均值.
(Ⅱ)若进鲜花n束(300<n≤500),求n取何值时可使利润Y的均值最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥S-ABCD中,底面ABCD是直角梯形,AB⊥AD,AB⊥BC,侧棱SA⊥底面ABCD,点O为侧棱SC的中点,且SA=AB=BC=2,AD=1.
(1)求证:OD∥平面SAB;
(2)求直线SD与平面SBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求函数y=log3(x2-2x)的值域.

查看答案和解析>>

同步练习册答案