【题目】已知
,
.
(1)求
在
处的切线方程;
(2)若
,证明
在
上单调递增;
(3)设
对任意
,
成立求实数k的取值范围.
科目:高中数学 来源: 题型:
【题目】如图1,等腰梯形ABCD中,
,
,
,O为BE中点,F为BC中点.将
沿BE折起到
的位置,如图2.
(1)证明:
平面
;
(2)若平面
平面BCDE,求点F到平面
的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知双曲线
的左、右焦点分别为
、
,过右焦点作平行于一条渐近线的直线交双曲线于点
,若
的内切圆半径为
,则双曲线的离心率为( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正方体有8个不同顶点,现任意选择其中4个不同顶点,然后将它们两两相连,可组成平面图形成空间几何体.在组成的空间几何体中,可以是下列空间几何体中的________.(写出所有正确结论的编号)
①每个面都是直角三角形的四面体;
②每个面都是等边三角形的四面体;
③每个面都是全等的直角三角形的四面体;
④有三个面为等腰直角三角形,有一个面为等边三角形的四面体.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,矩形ABCD中,AD=2AB=4,E为BC的中点,现将△BAE与△DCE折起,使得平面BAE及平面DEC都与平面ADE垂直.
![]()
(1)求证:BC∥平面ADE;
(2)求二面角A﹣BE﹣C的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com