【题目】已知函数
,
.
(1)求函数
在
处的切线方程;
(2)设![]()
①当
时,求函数
的单调区间;
②当
时,求函数
的极大值.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|2x-a|+|2x-1|(a∈R).
(1)当a=-1时,求f(x)≤2的解集;
(2)若f(x)≤|2x+1|的解集包含集合
,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
是无穷数列,若存在正整数k,使得对任意
,均有
,则称
是间隔递增数列,k是
的间隔数,下列说法正确的是( )
A.公比大于1的等比数列一定是间隔递增数列
B.已知
,则
是间隔递增数列
C.已知
,则
是间隔递增数列且最小间隔数是2
D.已知
,若
是间隔递增数列且最小间隔数是3,则![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某电讯企业为了了解某地区居民对电讯服务质量评价情况,随机调查100 名用户,根据这100名用户对该电讯企业的评分,绘制频率分布直方图,如图所示,其中样本数据分组为
,
,……
.
![]()
(1)估计该地区用户对该电讯企业评分不低于70分的概率,并估计对该电讯企业评分的中位数;
(2)现从评分在
的调查用户中随机抽取2人,求2人评分都在
的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某单位的食堂中,食堂每天以10元/斤的价格购进米粉,然后以4.4元/碗的价格出售,每碗内含米粉0.2斤,如果当天卖不完,剩下的米粉以2元/斤的价格卖给养猪场.根据以往统计资料,得到食堂某天米粉需求量的频率分布直方图如图所示,若食堂购进了80斤米粉,以
(斤)(其中
)表示米粉的需求量,
(元)表示利润.
(1)估计该天食堂利润不少于760元的概率;
(2)在直方图的需求量分组中,以区间中间值作为该区间的需求量,以需求量落入该区间的频率作为需求量在该区间的概率,求
的分布列和数学期望.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年11月26日,联合国教科文组织宣布3月14日为“国际数学日”(昵称:
),2020年3月14日是第一个“国际数学日”.圆周率
是圆的周长与直径的比值,是一个在数学及物理学中普遍存在的数学常数.
有许多奇妙性质,如莱布尼兹恒等式
,即为正奇数倒数正负交错相加等.小红设计了如图所示的程序框图,要求输出的
值与
非常近似,则①、②中分别填入的可以是( )
![]()
A.
,
B.
,![]()
C.
,
D.
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=|x﹣a|+|x+b|,ab>0.
(1)当a=1,b=1时,求不等式f(x)<3的解集;
(2)若f(x)的最小值为2,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四棱锥
,底面
为平行四边形,且
,点M为
的中点,
,且平面
平面
.
![]()
(1)求证:平面
平面
;
(2)当直线
与平面
所成角的正切值为
时,求四棱锥
的体积及平面
将四棱锥分成的两部分的体积比.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,直线
的参数方程为
(
为参数,
为直线
的倾斜角),以坐标原点
为极点,以
轴正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(1)写出曲线
的直角坐标方程,并求
时直线
的普通方程;
(2)直线
和曲线
交于
、
两点,点
的直角坐标为
,求
的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com