分析 作出不等式组对应的平面区域,利用目标函数z=2x+y的最小值为-5,建立条件关系即可求出k的值.
解答
解:目标函数z=2x+y的最小值为-5,
∴y=-2x+z,要使目标函数z=2x+y的最小值为-5,
则平面区域位于直线y=-2x+z的右上方,可以求得2x+y=-5,
作出变量x,y满足约束条件$\left\{\begin{array}{l}x-y+1≥0\\ 2x-y-1≤0\\ x+y-a≥0\end{array}\right.$对应的平面区域如图:
则目标函数经过点A,
由$\left\{\begin{array}{l}{2x+y=-5}\\{x-y+1=0}\end{array}\right.$,解得A(-2,-1),同时A也在直线x+y-a=0上,
即-2-1-a=0,
解得a=-3,
故答案为:-3.
点评 本题主要考查线性规划的应用,根据目标函数z=3x+y的最小值为-5,确定平面区域的位置,利用数形结合是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | 2017 | B. | 1010 | C. | 1008 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{22}{9}$ | B. | -$\frac{2}{9}$ | C. | -$\frac{7}{3}$ | D. | -$\frac{5}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $1+\sqrt{5}$ | B. | $\frac{{\sqrt{5}-1}}{2}$ | C. | $\frac{{\sqrt{5}+1}}{2}$ | D. | $\sqrt{5}-1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[{0,\frac{{\sqrt{3}}}{3}}]$ | B. | $[{-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}}]$ | C. | $[{-\frac{1}{2},\frac{1}{2}}]$ | D. | $[{0,\frac{1}{2}}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | a<c<b | C. | c<a<b | D. | c<b<a |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com