精英家教网 > 高中数学 > 题目详情
9.在平面直角坐标系xOy中,圆O的方程为x2+y2=4,直线l的方程为y=k(x+2),若在圆O上至少存在三点到直线l的距离为1,则实数k的取值范围是(  )
A.$[{0,\frac{{\sqrt{3}}}{3}}]$B.$[{-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}}]$C.$[{-\frac{1}{2},\frac{1}{2}}]$D.$[{0,\frac{1}{2}}]$

分析 求出圆心O(0,0),半径r=2,由在圆O上至少存在三点到直线l的距离为1,得到圆心O(0,0)到直线y=k(x+2)的距离d≤1,由此能求出实数k的取值范围.

解答 解:∵圆O的方程为x2+y2=4,直线l的方程为y=k(x+2),
∴圆心O(0,0),半径r=2,
∵在圆O上至少存在三点到直线l的距离为1,
∴圆心O(0,0)到直线y=k(x+2)的距离d≤1,
即d=$\frac{|2k|}{\sqrt{{k}^{2}+1}}$≤1,
解得-$\frac{\sqrt{3}}{3}≤k≤\frac{\sqrt{3}}{3}$.
∴实数k的取值范围是[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$].
故选:B.

点评 本题考查实数的取值范围的求法,考查圆、直线方程、点到直线距离公式等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.复数$z=\frac{{({1-i})({4-i})}}{1+i}$的共轭复数是(  )
A.-4iB.-4C.4iD.-1+4i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.双曲线C1:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的焦点为F1,F2,其中F2为抛物线C2:y2=2px(p>0)的焦点,设C1与C2的一个交点为P,若|PF2|=|F1F2|,则C1的离心率为$\sqrt{2}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=ln(ax+b)+x2(a≠0).
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线方程为y=x,求a,b的值;
(Ⅱ)若f(x)≤x2+x恒成立,求ab的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知变量x,y满足约束条件$\left\{\begin{array}{l}x-y+1≥0\\ 2x-y-1≤0\\ x+y-a≥0\end{array}\right.$,目标函数z=2x+y的最小值为-5,则实数a=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设集合A={x|x<2},B={y|y=2x-1},则A∩B=(  )
A.(-∞,3)B.[2,3)C.(-∞,2)D.(-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设集合A={x|x<2},B={y|y=2x-1},则A∩B=(  )
A.[-1,2)B.(0,2)C.(-∞,2)D.(-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.f(x)=$\frac{1}{2}$ax2+3x-(a+3)lnx(a>-$\frac{3}{2}$)
(1)当a=1时,求曲线y=f(x)在x=1处的切线方程,
(2)讨论f(x)的单调性,
(3)?a∈[1,2],?x∈[1,3],f(x)≥ta2恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年江西省高一上学期第一次月考数学试卷(解析版) 题型:选择题

已知集合,则( )

A. B. C. D.

查看答案和解析>>

同步练习册答案