精英家教网 > 高中数学 > 题目详情
20.双曲线C1:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的焦点为F1,F2,其中F2为抛物线C2:y2=2px(p>0)的焦点,设C1与C2的一个交点为P,若|PF2|=|F1F2|,则C1的离心率为$\sqrt{2}$+1.

分析 设P(m,n)位于第一象限,求出抛物线的焦点和准线方程,可得c=$\frac{p}{2}$,再由抛物线的定义,求得m,代入抛物线的方程可得n,代入双曲线的方程,由双曲线的a,b,c和离心率公式,化简整理计算即可得到所求值.

解答 解:设P(m,n)位于第一象限,可得m>0,n>0,
由题意可得F2($\frac{p}{2}$,0),且双曲线的c=$\frac{p}{2}$,
抛物线的焦点为准线方程为x=-$\frac{p}{2}$,
由抛物线的定义可得m+$\frac{p}{2}$=|PF2|=|F1F2|=2c,
即有m=c,n=$\sqrt{2pm}$=$\sqrt{4{c}^{2}}$=2c,
即P(c,2c),代入双曲线的方程可得,
$\frac{{c}^{2}}{{a}^{2}}$-$\frac{4{c}^{2}}{{b}^{2}}$=1,
即为e2-$\frac{4{e}^{2}}{{e}^{2}-1}$=1,
化为e4-6e2+1=0,
解得e2=3+2$\sqrt{2}$(3-2$\sqrt{2}$舍去),
可得e=1+$\sqrt{2}$.
故答案为:1+$\sqrt{2}$.

点评 本题考查双曲线的离心率的求法,注意运用抛物线的定义和点满足双曲线的方程,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.若f(x)=2xf'(1)+x2,则f'(0)=(  )
A.$\frac{1}{2}$B.6C.-2D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知数列{an}为等差数列,若a8=4,则数列{an}的前15项和S15=(  )
A.12B.32C.60D.120

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知全集U=R,集合A={x|x2-2x≤0},B={y|y=sinx,x∈R},则图中阴影部分表示的集合为(  )
A.[-1,2]B.[-1,0)∪(1,2]C.[0,1]D.(-∞,-1)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设数列{an}的前n项和为Sn,对任意的正整数n,都有an=5Sn+1成立,bn=-1-log2|an|,数列{bn}的前n项和为Tn,cn=$\frac{{b}_{n+1}}{{T}_{n}{T}_{n+1}}$.
(1)求数列{an}的通项公式与数列{cn}前n项和An
(2)对任意正整数m、k,是否存在数列{an}中的项an,使得|Sm-Sk|≤32an成立?若存在,请求出正整数n的取值集合,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xOy中,动点S到点F(1,0)的距离与到直线x=2的距离的比值为$\frac{{\sqrt{2}}}{2}$.
(Ⅰ)求动点S的轨迹E的方程;
(Ⅱ)设点P是x轴上的一个动点,过P作斜率为$\frac{{\sqrt{2}}}{2}$的直线l交轨迹E于A,B两点,求证:|PA|2+|PB|2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,AC=$\sqrt{2}$,AB=2,∠BAC=135°,D是BC的中点,M是AD上一点,且$\overrightarrow{AM}$=2$\overrightarrow{MD}$,则$\overrightarrow{MB}$•$\overrightarrow{MC}$的值是(  )
A.-$\frac{22}{9}$B.-$\frac{2}{9}$C.-$\frac{7}{3}$D.-$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在平面直角坐标系xOy中,圆O的方程为x2+y2=4,直线l的方程为y=k(x+2),若在圆O上至少存在三点到直线l的距离为1,则实数k的取值范围是(  )
A.$[{0,\frac{{\sqrt{3}}}{3}}]$B.$[{-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}}]$C.$[{-\frac{1}{2},\frac{1}{2}}]$D.$[{0,\frac{1}{2}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的最小正周期为π,将该函数的图象向左平移$\frac{π}{6}$个单位后,得到的图象对应的函数为奇函数,则f(x)的图象(  )
A.关于点($\frac{π}{12}$,0)对称B.关于直线x=$\frac{5π}{12}$对称
C.关于点($\frac{5π}{12}$,0)对称D.关于直线x=$\frac{π}{12}$对称

查看答案和解析>>

同步练习册答案