精英家教网 > 高中数学 > 题目详情
12.函数f(x)=$\left\{\begin{array}{l}{x^2}+x+1(x>0)\\ a+1(x=0)\\ b{x^2}+x+c(x<0)\end{array}$为奇函数,则a+b+c=-3.

分析 由题意,f(0)=a+1=0,求出a=-1.f(-1)=-f(1),可得b-1+c=-(1+1+1),求出b+c=-2,即可得出结论.

解答 解:由题意,f(0)=a+1=0,∴a=-1.
f(-1)=-f(1),可得b-1+c=-(1+1+1),∴b+c=-2,
∴a+b+c=-3.
故答案为:-3.

点评 本题考查分段函数,考查函数的奇偶性,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.下列各组函数中,表示同一个函数的是(  )
A.f(x)=$\sqrt{{x}^{2}}$,g(x)=|x|B.f(x)=x0,g(x)=1
C.f(x)=$\frac{{x}^{2}-1}{x+1}$,g(x)=x-1D.f(x)=$\sqrt{x+1}$•$\sqrt{x-1}$,g(x)=$\sqrt{{x}^{2}-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.叙述并用坐标法证明余弦定理.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列命题错误的是(  )
A.命题“若x2+y2=0,则x=y=0”的逆否命题为“若x,y中至少有一个不为0,则x2+y2≠0”
B.若命题p:?x0∈R,x02-x0+1≤0,则¬P:?x∈R,x2-x+1>0
C.命题 P:若x=2且y=3,则x+y-5=0,命题P的否命题为假
D.设集合$A=\left\{{\left.x\right|\frac{x-1}{x+1}<0}\right\}$,B={x||x-1|<a},则“a=1”是“A∩B≠∅”的必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.给出四个命题:
(1)当n=0时,y=xn的图象是一条直线;
(2)幂函数图象都经过(0,1)、(1,1)两点;
(3)幂函数图象不可能出现在第四象限;
(4)幂函数y=xn在第一象限为减函数,则n<0.
其中正确的命题个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.双曲线$\frac{y^2}{9}-\frac{x^2}{7}$=1的焦点坐标为(0,4),(0,-4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数y=|x+3|,向量程序框表示的是给出x值,求所对应的函数值的算法,请将该程序框图补充完整,其中①处应填x≥-3;②处应填y=-x-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.4名男歌手和2名女歌手联合举行一场音乐会,出场顺序要求两名女歌手不相邻,共有出场方案的种数是(  )
A.$A_4^4A_5^2$B.$A_4^4A_3^2$C.$A_4^4A_2^2$D.$A_4^4A_4^1A_3^1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f(2)=3,对于?m,n∈N*满足f(m+n)=f(m)+f(n)+mn,则f(n)=$\frac{{n}^{2}+n}{2}$.

查看答案和解析>>

同步练习册答案