精英家教网 > 高中数学 > 题目详情
1.化简$\frac{sin15°cos9°-cos66°}{sin15°sin9°+sin66°}$的结果是(  )
A.tan9°B.-tan9°C.tan15°D.-tan15°

分析 直接利用两角和与差的三角函数化简求解即可.

解答 解:$\frac{sin15°cos9°-cos66°}{sin15°sin9°+sin66°}$=$\frac{sin15°cos9°-sin(15°+9°)}{sin15°sin9°+cos(15°+9°)}$=$\frac{-cos15°sin9°}{-cos15°cos9°}$=tan9°.
故选:A.

点评 本题考查两角和与差的三角函数,同角三角函数基本关系式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设函数f(x)=($\frac{2}{e}$)x,g(x)=($\frac{e}{3}$)x,其中e为自然对数的底数,则(  )
A.对于任意实数x恒有f(x)≥g(x)B.存在正实数x使得f(x)>g(x)
C.对于任意实数x恒有f(x)≤g(x)D.存在正实数x使得f(x)<g(x)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如果三棱锥A-BCD的底面BCD是正三角形,顶点A在底面BCD上的射影是△BCD的中心,则这样的三棱锥称为正三棱锥.给出下列结论:
①正三棱锥A-BCD中必有AB⊥CD,BC⊥AD,AC⊥BD;
②正三棱锥A-BCD所有相对棱中点连线必交于一点;
③当正三棱锥A-BCD所有棱长都相等时,该棱锥内切球和外接球半径之比为1:2;
④若正三棱锥A-BCD的侧棱长均为2,侧面三角形的顶角为40°,过点B的平面分别交侧棱AC,AD于M,N,则△BMN周长的最小值等于$2\sqrt{3}$.
以上结论正确的是①②④.(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知表中的对数值有且只有两个是错误的:
x1.53568912
lgx3a-b+c2a-ba+c1+a-b-c3(1-a-c)2(2a-b)1-a+2b
请你指出这两个错误(  )
A.lg1.5≠3a-b+c,lg12≠1-a+2bB.lg3≠2a-b,lg9≠2(2a-b)
C.lg5≠a+c,lg8≠3(1-a-c)D.lg3≠2a-b,lg6≠1+a-b-c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.用分期付款的方式购买一批总价为2100万元的住房,购买当天首付100万元,以后每月的这一天都交100万元,并加付此前的欠款利息,设月利率为1%,问分期付款的第10个月应付多少万元?全部付清,买这批房实际付了多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知4张卡片上分别写着数字1,2,3,4,甲、乙两人等可能地从这四张卡片中选择1张,则他们选择同一卡片的概率为(  )
A.$\frac{1}{8}$B.$\frac{1}{16}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图是甲、乙两名篮球运动员2013年赛季每场比赛得分的茎叶图,则甲、乙两人比赛得分的中位数之和为53.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知直线l1:3x+4y+1=0和点A(1,2),设过A点与l1垂直的直线为l2
(1)求直线l2的方程;
(2)求直线l2与两坐标轴围成的三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.N(100,σ2),已知P(80<ξ≤100)=0.35,若按成绩分层抽样的方式取100份试卷进行分析,则应从120分以上的试卷中抽取(  )
A.5份B.10份C.15份D.20份

查看答案和解析>>

同步练习册答案