精英家教网 > 高中数学 > 题目详情
9.将11011(2)转化为十进制的数是27.

分析 括号里的数字从左开始,第一位数字是几,再乘以2的0次幂,第二位数字是几,再乘以2的1次幂,以此类推,进行计算即可.

解答 解:1×24+1×23+0×22+1×21+1×20=16+8+0+2+1=27,
故答案为:27.

点评 本题考查进位制,本题解题的关键是找出题目给出的运算顺序,按照有理数混合运算的顺序进行计算即可,本题是一个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.在平面直角坐标系xOy中,函数f(x)=asinax+cosax(a>0)的最小正周期为$\frac{2π}{a}$,在一个最小正周期长的区间上的图象与函数$g(x)=\sqrt{{a^2}+1}$的图象所围成的封闭图形的面积是$\frac{2π}{a}\sqrt{{a}^{2}+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.正方体ABCD-A1B1C1D1的棱长为1,P、Q分别是正方形AA1D1D和A1B1C1D1的中心.
(1)证明:PQ∥平面DD1C1C;
(2)求线段PQ的长;
(3)求PQ与B1C所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在同一平面直角坐标系中经过伸缩变换$\left\{\begin{array}{l}x'=5x\\ y'=3y\end{array}\right.$后,曲线C变为曲线2x′2+8y′2=0,则曲线C的方程为(  )
A.25x2+36y2=0B.9x2+100y2=0C.10x+24y=0D.$\frac{2}{25}{x^2}+\frac{8}{9}{y^2}=0$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=sinx,x∈[0,$\frac{3π}{2}$],则y=f(x)和直线x=$\frac{3}{2}π$及x轴围成的封闭图形的面积为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,$\overrightarrow{c}$=2$\overrightarrow{a}$+3$\overrightarrow{b}$,$\overrightarrow{d}$=k$\overrightarrow{a}$-$\overrightarrow{b}$ (k∈R),且$\overrightarrow{c}$$⊥\overrightarrow{d}$,那么k=(  )
A.$\frac{8}{7}$B.2C.$\frac{4}{7}$D.$\frac{\sqrt{57}}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.解方程:
$(1)A_{2x}^4=60A_x^3$
$(2)C_{n+3}^{n+1}=C_{n+1}^{n-1}+C_{n+1}^n+C_n^{n-2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=sin2x-cos2x-4sin(x+$\frac{π}{4}$)sin(x-$\frac{π}{4}$)
(1)化简f(x)并写出最大值与最小值
(2)△ABC中,f(B)=-$\frac{1}{2}$,b=2,求ac的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在底面是矩形的四棱锥P-ABCD中,PA⊥面ABCD中,E、F分别是PD、AB的中点,且PA=AB=1,BC=2,
(1)求CD与AE所成的角大小;
(2)求证:直线AE∥平面PFC;
(3)求F到平面PBC的距离.

查看答案和解析>>

同步练习册答案