分析 由三角函数知识化简函数的表达式为正弦函数的形式,令sinx=t,则t∈[-1,1],利用二次函数的性质求解函数值域即可.
解答 解:化简可得y=cos2x-sinx-3=-sin2x-sinx-2
=-(sinx-$\frac{1}{2}$)2-$\frac{7}{4}$,
令sinx=t,则t∈[-1,1],
由二次函数的性质可知y=-2(t-$\frac{1}{2}$)2-$\frac{7}{4}$,
在t∈[-1,$\frac{1}{2}$]单调递增,在t∈[$\frac{1}{2}$,1]单调递减,
∴当t=$\frac{1}{2}$时,函数取到最大值:$-\frac{7}{4}$,
当t=-1时,函数取到最小值-2.
y=cos2x-sinx-3的值域:[-2,-$\frac{7}{4}$].
点评 本题考查复合三角函数的单调性和最值,换元是解决问题的关键,属中档题.
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{π}{12}$,$\frac{5π}{12}$] | B. | [-$\frac{7π}{12}$,-$\frac{1}{12}$π] | C. | [-$\frac{π}{12}$,$\frac{7π}{12}$] | D. | [-$\frac{7π}{12}$,$\frac{5π}{12}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2π}{3}$ | B. | π | C. | $\frac{4π}{3}$ | D. | $\frac{5π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com