精英家教网 > 高中数学 > 题目详情
已知f(x)=
-sin
πx
2
,x≤0
f(x-2)+1,x>0
,则f(3)=(  )
A、
1
2
B、-
1
2
C、-1
D、3
考点:函数的值
专题:函数的性质及应用
分析:利用分段函数的性质求解.
解答: 解:∵f(x)=
-sin
πx
2
,x≤0
f(x-2)+1,x>0

∴f(3)=f(3-2)+1
=f(1)+1
=f(1-2)+1+1
=f(-1)+2
=-sin(-
π
2
)+2=3.
故选:D.
点评:本题考查函数值的求法,是中档题,解题时要认真审题,注意分段函数的性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=sin(
π
2
x+
π
3
)(x∈R),若存在这样的实数x1,x2,对任意的x∈R,都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

袋中有5个大小相同的小球,其中1个白球和4个黑球,每次从中任取一球,每次取出的黑球不再放回去,直到取出白球为止.求取球次数X的期望和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知2B=A+C,则B=(  )
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中数学 来源: 题型:

讨论函数y=
10x+10-x
10x-10-x
的定义域、值域、奇偶性和单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数f(x)在(0,+∞)单调递减,则满足f(
1
x
)<f(1)的实数x的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lg(|x|+1),定义函数F(x)=
f(x),x>0
-f(x),x<0
,若mn<0,m+n>0,则有F(m)+F(n)(  )
A、一定为负数B、等于0
C、一定为正数D、正负不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
ex+x,x≥0
e-x-x,x<0
,若f(-a)+f(a)≤2f(1),则实数a取值范围是(  )
A、(-∞,-1]∪[1,+∞)
B、[-1,0]
C、[0,1]
D、[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,Sn为数列{an}的前n项和,若3a3=a13,则
S10
S5
等于(  )
A、1B、2C、3D、4

查看答案和解析>>

同步练习册答案