精英家教网 > 高中数学 > 题目详情

【题目】如图所示,该几何体是由一个直三棱柱 和一个正四棱锥 组合而成,

(Ⅰ)证明:平面 平面
(Ⅱ)求正四棱锥 的高 ,使得二面角 的余弦值是

【答案】证明:(Ⅰ)正三棱柱 中, 平面
所以 ,又
所以 平面 平面
所以平面 平面
(Ⅱ)由(Ⅰ)知 平面 ,以 为原点, 方向为 轴建立空间直角坐标系 ,设正四棱锥 的高为 ,则
设平面 的一个法向量
,则 ,所以
设平面 的一个法向量 ,则
,则 ,所以
二面角 的余弦值是
所以
解得
【解析】(1)证明:AD⊥面ABFE,即可证明面PAD⊥面ABFE,(2)建立空间坐标系,求出平面的法向量,利用向量法建立方程关系即可求正四棱锥P-ABCD的高.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 .(Ⅰ)求函数 的单调递增区间;
(Ⅱ)函数 上的最大值与最小值的差为 ,求 的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点 ,焦点在 轴上,离心率为 的椭圆过点
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆与 轴的非负半轴交于点 ,过点 作互相垂直的两条直线,分别交椭圆于点 两点,连接 ,求 的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,底面为等腰梯形的四棱锥 中, 平面 的中点, .

(1)证明: 平面
(2)若 ,求三棱锥 的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 为半圆 的直径,点 是半圆弧上的两点, .曲线 经过点 ,且曲线 上任意点 满足: 为定值.

(Ⅰ)求曲线 的方程;
(Ⅱ)设过点 的直线 与曲线 交于不同的两点 ,求 面积最大时的直线 的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线 与椭圆 有且只有一个公共点 .
(1)求椭圆C的标准方程;
(2)若直线 CA,B两点,且OAOB(O为原点),求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱 中, 分别是 的中点.

(Ⅰ)求证: 平面
(Ⅱ)若 上一点 满足 ,求 所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图的程序框图(N∈N*),那么输出的p是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)研究函数的极值点;

(2)当时,若对任意的,恒有,求的取值范围;

(3)证明:.

查看答案和解析>>

同步练习册答案