【题目】如图所示,该几何体是由一个直三棱柱 和一个正四棱锥 组合而成, , .
(Ⅰ)证明:平面 平面 ;
(Ⅱ)求正四棱锥 的高 ,使得二面角 的余弦值是 .
科目:高中数学 来源: 题型:
【题目】已知中心在原点 ,焦点在 轴上,离心率为 的椭圆过点 .
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆与 轴的非负半轴交于点 ,过点 作互相垂直的两条直线,分别交椭圆于点 , 两点,连接 ,求 的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图, 为半圆 的直径,点 是半圆弧上的两点, , .曲线 经过点 ,且曲线 上任意点 满足: 为定值.
(Ⅰ)求曲线 的方程;
(Ⅱ)设过点 的直线 与曲线 交于不同的两点 ,求 面积最大时的直线 的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com