精英家教网 > 高中数学 > 题目详情

【题目】如图,底面为等腰梯形的四棱锥 中, 平面 的中点, .

(1)证明: 平面
(2)若 ,求三棱锥 的体积.

【答案】
(1)证明:取 的中点 ,连接 ,因为 的中点,
所以
又因为
所以四边形 是平行四边形,
所以 ,又 平面 平面
所以 平面 .
(2)解:等腰梯形 中,作 ,则 ,在 中, ,则
,即点 的距离 ,又 平面 平面 ,所以 ,又 ,∴ 平面 .
∴三棱锥 的体积 .
【解析】(1)取 E B 的中点 G ,连接 F G , C G ,由中位线性质不难得到DFGC为平行四边形,故D F / / C G ,又 D F 平面 E B C , C G 平面 E B C ,所以 平面 .(2)等腰梯形ABCD中,作CH⊥AB于H,求出点B到CD的距离,即可求出三棱锥B-CDE的体积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某分公司经销某种品牌产品,每件产品的成本为30元,并且每件产品须向总公司缴纳a元(a为常数,2≤a≤5)的管理费,根据多年的统计经验,预计当每件产品的售价为x元时,产品一年的销售量为 (e为自然对数的底数)万件,已知每件产品的售价为40元时,该产品一年的销售量为500万件.经物价部门核定每件产品的售价x最低不低于35元,最高不超过41元.
(1)求分公司经营该产品一年的利润L(x)万元与每件产品的售价x元的函数关系式;
(2)当每件产品的售价为多少元时,该产品一年的利润L(x)最大,并求出L(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列判断错误的是( )
A.若随机变量 服从正态分布 ,则
B.若 组数据 的散点都在 上,则相关系数
C.若随机变量 服从二项分布: , 则
D. 的充分不必要条件;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在 中, . 分别是边 上的点,且 .现将 沿直线 折起,形成四棱锥 ,则此四棱锥的体积的最大值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .
(Ⅰ)当 时,求不等式 的解集;
(Ⅱ)若 的解集包含 ,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体 的棱长为1, 分别是棱 的中点,过 的平面与棱 分别交于点 .设

①四边形 一定是菱形;② 平面 ;③四边形 的面积 在区间 上具有单调性;④四棱锥 的体积为定值.
以上结论正确的个数是( )
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,该几何体是由一个直三棱柱 和一个正四棱锥 组合而成,

(Ⅰ)证明:平面 平面
(Ⅱ)求正四棱锥 的高 ,使得二面角 的余弦值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,不等式 成立.
(Ⅰ)求实数 的取值范围;
(Ⅱ)在(Ⅰ)的条件下,对于实数 满足 且不等式 恒成立,求 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .
(I)若曲线 存在斜率为-1的切线,求实数a的取值范围;
(II)求 的单调区间;
(III)设函数 ,求证:当 时, 上存在极小值.

查看答案和解析>>

同步练习册答案