【题目】如图,在直三棱柱
中,
分别是
和
的中点.![]()
(Ⅰ)求证:
平面
;
(Ⅱ)若
上一点
满足
,求
与
所成角的余弦值.
【答案】解:(Ⅰ)证明:
直三棱柱
中, ![]()
,又
,
,
取
的中点
,连接
,
为中点,
且
.
又
为
中点,
且
,
且
,故四边形
为平行四边形,
,
,
.
(Ⅱ)由等体积法
有
,则
为
中点,
取
中点
,连
, 则
,故
与
所成角为
(或其补角),
在
中,
,
由余弦定理有
即为所求角的余弦值
【解析】(1)根据题意作出辅助线即可得证四边形为平行四边形所以DM∥B1N,再由线面平行的判定定理即可得证。(2)由等体积法转化三棱锥的体积得到PB=1,根据题意作出辅助线进而得到N Q ∥ B1 P故故 B1 P 与 M N 所成角为 ∠ Q N M在Δ Q N M 中利用余弦定理
求出此角的余弦值即可。
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,已知曲线
的参数方程为
(
为参数),点
是曲线
上的一动点,以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,直线
的方程为
.
(Ⅰ)求线段
的中点
的轨迹的极坐标方程;
(Ⅱ)求曲线
上的点到直线
的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,该几何体是由一个直三棱柱
和一个正四棱锥
组合而成,
,
.![]()
(Ⅰ)证明:平面
平面
;
(Ⅱ)求正四棱锥
的高
,使得二面角
的余弦值是
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
的焦点为F,直线
与x轴的交点为P,与抛物线的交点为Q,且
.
(1)求抛物线的方程;
(2)过F的直线l与抛物线相交于A,D两点,与圆
相交于B,C两点(A,B两点相邻),过A,D两点分别作抛物线的切线,两条切线相交于点M,求△ABM与△CDM的面积之积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】执行如图所示的程序框图,若输出的结果是8,则判断框内m的取值范围是( ) ![]()
A.(30,42]
B.(42,56]
C.(56,72]
D.(30,72)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
的定义域为
,如果
,
,使
(
为常数)成立,则称函数
在
上的均值为
.给出下列四个函数:①
;②
;③
;④
.则其中满足在其定义域上均值为2的函数是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com