精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,已知曲线 的参数方程为 为参数),点 是曲线 上的一动点,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,直线 的方程为 .
(Ⅰ)求线段 的中点 的轨迹的极坐标方程;
(Ⅱ)求曲线 上的点到直线 的距离的最大值.

【答案】解:(Ⅰ)设线段 的中点 的坐标为
由中点坐标公式得 为参数),
消去参数得 的轨迹的直角坐标方程为
由互化公式可得
故答案为:点 的轨迹的极坐标方程为
(Ⅱ)由直线 的极坐标方程为 ,得
所以直线 的直角坐标方程为
曲线 的普通方程为 ,它表示以 为圆心,2为半径的圆,
则圆心到直线 的距离为 ,所以直线 与圆相离,
故答案为:曲线 上的点到直线 的距离的最大值为
【解析】(1)设OP的中点M的坐标为(x,y),用中点坐标公式将点M的坐标表示为为参数的参数方程,先普通方程,再化为极坐标方程.
(2)将直线l的极坐标方程用公式化为普通方程,当直线与圆相离时,圆上的点到直线的点的距离最大值就是圆心到直线的距离加上半径.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3 x2+ x+ ,则 )的值为(
A.2016
B.1008
C.504
D.2017

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=2x2-ln x在其定义域内的一个子区间(k-1,k+1)内不是单调函数,则实数k的取值范围是( )
A.[1,+∞)
B.[1,2)
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .(Ⅰ)求函数 的单调递增区间;
(Ⅱ)函数 上的最大值与最小值的差为 ,求 的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,且点 满足条件 ,若点 关于直线 的对称点是 ,则线段 的最小值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线 的焦点为 ,准线为 ,点 在抛物线 上,已知以点 为圆心, 为半径的圆 两点.
(Ⅰ)若 的面积为4,求抛物线 的方程;
(Ⅱ)若 三点在同一条直线 上,直线 平行,且 与抛物线 只有一个公共点,求直线 的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆 )的焦距与椭圆 的短轴长相等,且 的长轴长相等,这两个椭圆在第一象限的交点为 ,直线 经过 轴正半轴上的顶点 且与直线 为坐标原点)垂直, 的另一个交点为 交于 两点.

(1)求 的标准方程;
(2)求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点 ,焦点在 轴上,离心率为 的椭圆过点
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆与 轴的非负半轴交于点 ,过点 作互相垂直的两条直线,分别交椭圆于点 两点,连接 ,求 的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱 中, 分别是 的中点.

(Ⅰ)求证: 平面
(Ⅱ)若 上一点 满足 ,求 所成角的余弦值.

查看答案和解析>>

同步练习册答案