精英家教网 > 高中数学 > 题目详情

【题目】如图,椭圆 )的焦距与椭圆 的短轴长相等,且 的长轴长相等,这两个椭圆在第一象限的交点为 ,直线 经过 轴正半轴上的顶点 且与直线 为坐标原点)垂直, 的另一个交点为 交于 两点.

(1)求 的标准方程;
(2)求

【答案】
(1)解:由题意可得 所以
的标准方程为
(2)解:联立
,∴
易知 ,∴ 的方程为
联立 ,∴

联立
,则


【解析】(1)根据题目中所给的条件的特点,由题意可得关于a,b的方程组,求出a,b的值,即可得到W的标准方程,
(2)先求出直线l的方程,分别与椭圆W和椭圆Ω,联立方程组,利用弦长公式求出BC和MN的值,即可得出它们的比值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图直三棱柱 中, 为边长为2的等边三角形, ,点 分别是边 的中点,动点 在四边形 内部运动,并且始终有 平面 ,则动点 的轨迹长度为( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来随着我国在教育利研上的投入不断加大,科学技术得到迅猛发展,国内企业的国际竞争力得到大幅提升.伴随着国内市场增速放缓,国内确实力企业纷纷进行海外布局,第二轮企业出海潮到来,如在智能手机行业,国产品牌已在赶超国外巨头,某品牌手机公司一直默默拓展海外市场,在海外共设30多个分支机构,需要国内公司外派大量70后、80后中青年员工.该企业为了解这两个年龄层员工是否愿意被外派上作的态度,按分层抽样的方式从70后利80后的员工中随机调查了100位,得到数据如下表:

愿意被外派

不愿意被外派

合计

70后

20

20

40

80后

40

20

60

合计

60

40

100

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

(参考公式: ,其中
(1)根据查的数据,是否有 的把握认为“是否愿意被外派与年龄有关”,并说明理由;
(2)该公司参观驻海外分支机构的交流体验活动,拟安排4名参与调查的70后员工参加,70后的员工中有愿意被外派的3人和不愿意被外派的3人报名参加,现采用随机抽样方法从报名的员工中选4人,求选到愿意被外派人数不少于不愿意被外派人数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,已知曲线 的参数方程为 为参数),点 是曲线 上的一动点,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,直线 的方程为 .
(Ⅰ)求线段 的中点 的轨迹的极坐标方程;
(Ⅱ)求曲线 上的点到直线 的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线 的参数方程为 为参数),直线 的参数方程为 为参数).
(Ⅰ)求曲线 和直线 的普通方程;
(Ⅱ)若点 为曲线 上一点,求点 到直线 的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列判断错误的是( )
A.若随机变量 服从正态分布 ,则
B.若 组数据 的散点都在 上,则相关系数
C.若随机变量 服从二项分布: , 则
D. 的充分不必要条件;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .
(1)讨论 的单调性;
(2)若 有两个极值点 ,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .
(Ⅰ)当 时,求不等式 的解集;
(Ⅱ)若 的解集包含 ,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,若输出的结果是8,则判断框内m的取值范围是(
A.(30,42]
B.(42,56]
C.(56,72]
D.(30,72)

查看答案和解析>>

同步练习册答案