精英家教网 > 高中数学 > 题目详情
在某批次的某种灯泡中,随机地抽取个样品,并对其寿命进行追踪调查,将结果列成频率分布表如下.根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于天的灯泡是优等品,寿命小于天的灯泡是次品,其余的灯泡是正品.
寿命(天)
频数
频率















合计


(1)根据频率分布表中的数据,写出的值;
(2)某人从灯泡样品中随机地购买了个,如果这个灯泡的等级情况恰好与按三个等级分层抽样所得的结果相同,求的最小值;
(3)某人从这个批次的灯泡中随机地购买了个进行使用,若以上述频率作为概率,用表示此人所购买的灯泡中次品的个数,求的分布列和数学期望.
(1);(2);(3)详见解析.

试题分析:(1)根据频数之和为以及频率之和为分别求出的值;(2)先确定灯泡中优等品、正品、次品的个数,计算三者之间的比例,从而确定灯泡数的表达式,进而确定的最小值;(3)先确定随机变量的可能取值,根据题中条件确定在不同取值下的概率,并列出相应的分布列,求出数学期望.
试题解析:(1).
(2)由表可知:灯泡样品中优等品有个,正品有个,次品有个,
所以优等品、正品和次品的比例为.
所以按分层抽样法,购买灯泡数
所以的最小值为
(3)的所有取值为.
由题意,购买一个灯泡,且这个灯泡是次品的概率为
从本批次灯泡中购买个,可看成次独立重复试验,
所以


.
所以随机变量的分布列为:










所以的数学期望.
(注:写出.请酌情给分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某市为“市中学生知识竞赛”进行选拔性测试,且规定:成绩大于或等于90分的有参赛资格,90分以下(不包括90分)的被淘汰.若有500人参加测试,学生成绩的频率分布直方图如图.

(1)求获得参赛资格的人数;
(2)根据频率直方图,估算这500名学生测试的平均成绩;
(3)若知识竞赛分初赛和复赛,在初赛中每人最多有5次选题答题的机会,累计答对3题或答错3题即终止,答对3题者方可参加复赛.已知参赛者甲答对每一个问题的概率都相同,并且相互之间没有影响.已知他连续两次答错的概率为,求甲在初赛中答题个数的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

大家知道,莫言是中国首位获得诺贝尔文学奖的文学家,国人欢欣鼓舞。某高校文学社从男女生中各抽取50名同学调查对莫言作品的了程度,结果如下:

(1)试估计该学校学生阅读莫言作品超过50篇的概率。
(2)对莫言作品阅读超过75篇的则称为“对莫言作品非常了解”,否则为“一般了解”,根据题意完成下表,并判断能否有的把握认为对莫言作品的非常了解与性别有关?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某校高三2班有48名学生进行了一场投篮测试,其中男生28人,女生20人.为了了解其投篮成绩,甲、乙两人分别对全班的学生进行编号(1~48号),并以不同的方法进行数据抽样,其中一人用的是系统抽样,另一人用的是分层抽样.若此次投篮考试的成绩大于或等于80分视为优秀,小于80分视为不优秀,以下是甲、乙两人分别抽取的样本数据:
                                                               
(Ⅰ)从甲抽取的样本数据中任取两名同学的投篮成绩,记“抽到投篮成绩优秀”的人数为X,求X的分布列和数学期望;
(Ⅱ)请你根据乙抽取的样本数据完成下列2×2列联表,判断是否有95%以上的把握认为投篮成绩和性别有关?

(Ⅲ)判断甲、乙各用何种抽样方法,并根据(Ⅱ)的结论判断哪种抽样方法更优?说明理由.
下面的临界值表供参考:

0.15
0.10
0.05
0.010
0.005
0.001

2.072
2.706
3.841
6.635
7.879
10.828
(参考公式:,其中

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一台机器由于使用时间较长,但还可以使用,它按不同的转速生产出来的某机器零件有一些会有缺点,每小时生产有缺点零件的多少随机器运转的速度而变化,下表是抽样试验结果:
转速x/(rad/s)
16
14
12
8
每小时生产有缺点的零件数y/件
11
9
8
5
若实际生产中,允许每小时的产品中有缺点的零件数最多为10个,那么机器的转速应该控制所在的范围是(   )
A.10转/s以下
B.15转/s以下
C.20转/s以下
D.25转/s以下

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如下表所示:
 
杂质高
杂质低
旧设备
37
121
新设备
22
202
根据以上数据,则有________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

合肥市环保总站发布2014年1月11日到1月20日的空气质量指数(AQI),数据如下:153、203、268、166、157、164、268、407、335、119,则这组数据的中位数是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以下四个命题:
①从匀速传递的产品生产流水线上,质检员每分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
②若两个变量的线性相关性越强,则它们的相关系数的绝对值越接近于
③在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高;
④对分类变量的随机变量K2的观测值k来说,k越小,判断“有关系”的把握越大.其中真命题的序号为(    )
A.①④B.②④C.①③D.②③

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某高校组织自主招生考试,共有2 000名优秀同学参加笔试,成绩均介于195分到275分之间,从中随机抽取50名同学的成绩进行统计,将统计结果按如下方式分成8组:第1组[195,205),第2组[205,215),…,第8组[265,275].如图是按上述分组方法得到的频率分布直方图,且笔试成绩在260分(含260分)以上的同学进入面试.

(1)估计所有参加笔试的2 000名同学中,参加面试的同学人数;
(2)面试时,每位同学抽取两个问题,若两个问题全答错,则不能取得该校的自主招生资格;若两个问题均回答正确且笔试成绩在270分以上,则获A类资格;其他情况下获B类资格.现已知某中学有两人获得面试资格,且仅有一人笔试成绩为270分以上,在回答两个面试问题时,两人对每一个问题正确回答的概率均为,求恰有一名同学获得该高校B类资格的概率.

查看答案和解析>>

同步练习册答案