分析 根据已知中函数的周期性,结合f(-$\frac{5}{2}$)=f($\frac{9}{2}$),可得a值,进而得到f(5a)的值.
解答 解:f(x)是定义在R上且周期为2的函数,在区间[-1,1)上,f(x)=$\left\{\begin{array}{l}{x+a,-1≤x<0}\\{|\frac{2}{5}-x|,0≤x<1}\end{array}\right.$,
∴f(-$\frac{5}{2}$)=f(-$\frac{1}{2}$)=-$\frac{1}{2}$+a,
f($\frac{9}{2}$)=f($\frac{1}{2}$)=|$\frac{2}{5}$-$\frac{1}{2}$|=$\frac{1}{10}$,
∴a=$\frac{3}{5}$,
∴f(5a)=f(3)=f(-1)=-1+$\frac{3}{5}$=-$\frac{2}{5}$,
故答案为:-$\frac{2}{5}$
点评 本题考查的知识点是分段函数的应用,函数的周期性,根据已知求出a值,是解答的关键.
科目:高中数学 来源: 题型:选择题
| A. | (-3,-$\frac{3}{2}$) | B. | (-3,$\frac{3}{2}$) | C. | (1,$\frac{3}{2}$) | D. | ($\frac{3}{2}$,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{25}$ | B. | $\frac{1}{5}$ | C. | -$\frac{1}{5}$ | D. | -$\frac{7}{25}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com