精英家教网 > 高中数学 > 题目详情
6.如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:
(1)直线DE∥平面A1C1F;
(2)平面B1DE⊥平面A1C1F.

分析 (1)通过证明DE∥AC,进而DE∥A1C1,据此可得直线DE∥平面A1C1F1
(2)通过证明A1F⊥DE结合题目已知条件A1F⊥B1D,进而可得平面B1DE⊥平面A1C1F.

解答 解:(1)∵D,E分别为AB,BC的中点,
∴DE为△ABC的中位线,
∴DE∥AC,
∵ABC-A1B1C1为棱柱,
∴AC∥A1C1
∴DE∥A1C1
∵A1C1?平面A1C1F,且DE?平面A1C1F,
∴DE∥A1C1F;

(2)∵ABC-A1B1C1为直棱柱,
∴AA1⊥平面A1B1C1
∴AA1⊥A1C1
又∵A1C1⊥A1B1,且AA1∩A1B1=A1,AA1、A1B1?平面AA1B1B,
∴A1C1⊥平面AA1B1B,
∵DE∥A1C1
∴DE⊥平面AA1B1B,
又∵A1F?平面AA1B1B,
∴DE⊥A1F,
又∵A1F⊥B1D,DE∩B1D=D,且DE、B1D?平面B1DE,
∴A1F⊥平面B1DE,
又∵A1F?平面A1C1F,
∴平面B1DE⊥平面A1C1F.

点评 本题考查直线与平面平行的证明,以及平面与平面相互垂直的证明,把握常用方法最关键,难度不大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.函数y=2x2-e|x|在[-2,2]的图象大致为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若直线2mx-ny-2=0(m>0,n>0)过点(1,-2),则$\frac{1}{m}$+$\frac{2}{n}$最小值(  )
A.2B.6C.12D.3+2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是0.1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设f(x)是定义在R上且周期为2的函数,在区间[-1,1)上,f(x)=$\left\{\begin{array}{l}{x+a,-1≤x<0}\\{|\frac{2}{5}-x|,0≤x<1}\end{array}\right.$,其中a∈R,若f(-$\frac{5}{2}$)=f($\frac{9}{2}$),则f(5a)的值是-$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:
以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.
(Ⅰ)求X的分布列;
(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;
(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若直线y=kx+b是曲线y=lnx+2的切线,也是曲线y=ln(x+1)的切线,则b=1-ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=$\frac{x}{x-1}$(x≥2)的最大值为2.

查看答案和解析>>

同步练习册答案