精英家教网 > 高中数学 > 题目详情
12.非空数集A如果满足:①0∉A;②若对?x∈A,有$\frac{1}{x}$∈A,则称A是“互倒集”.给出以下数集:
①{x∈R|x2+ax+1=0};  
②{x|x2-4x+1<0};  
③{y|y=$\frac{lnx}{x}$,x∈[$\frac{1}{e}$,1)∪(1,e]};
④{y|y=$\left\{\begin{array}{l}{2x+\frac{2}{5},x∈[0,1)}\\{x+\frac{1}{x},x∈[1,2]}\end{array}\right.$}.
其中“互倒集”的个数是(  )
A.4B.3C.2D.1

分析 ①当-2<a<2时,原集合为空集;
②原集合化为{x|2-$\sqrt{3}$<x<2+$\sqrt{3}$},2-$\sqrt{3}$<$\frac{1}{x}$<2+$\sqrt{3}$,即可判断出正误;
③.当x∈[$\frac{1}{e}$,1)时,y∈[-e,0),当x∈(1,$\frac{1}{e}$]时,y∈(0,$\frac{1}{e}$],即可判断出正误;
④,y∈[$\frac{2}{5}$,$\frac{12}{5}$)∪[2,$\frac{5}{2}$]=[$\frac{2}{5}$,$\frac{5}{2}$]且$\frac{1}{y}$∈[$\frac{2}{5}$,$\frac{5}{2}$],即可判断出正误.

解答 解:对于集合①.当-2<a<2时,为空集,不是互倒集;
对于集合②.即{x|2-$\sqrt{3}$<x<2+$\sqrt{3}$},得$\frac{1}{2+\sqrt{3}}$<$\frac{1}{x}$<$\frac{1}{2-\sqrt{3}}$,得2-$\sqrt{3}$<$\frac{1}{x}$<2+$\sqrt{3}$,故集合②是互倒集;
对于集合③.当x∈[$\frac{1}{e}$,1)时,y∈[-e,0),当x∈(1,$\frac{1}{e}$]时,y∈(0,$\frac{1}{e}$],不是互倒集;
对于集合④.y∈[$\frac{2}{5}$,$\frac{12}{5}$)∪[2,$\frac{5}{2}$]=[$\frac{2}{5}$,$\frac{5}{2}$]且$\frac{1}{y}$∈[$\frac{2}{5}$,$\frac{5}{2}$],故集合④是互倒集.
故选:C.

点评 本题考查了集合的新定义“互倒集”、不等式的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.抛物线y=4x2上的一点M到焦点的距离为1,则点M的纵坐标是(  )
A.$\frac{17}{16}$B.$\frac{15}{16}$C.$\frac{7}{8}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知1弧度的圆心角所对的弧长为2,则这个圆心角所对的扇形的面积为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知向量$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(2,-3),当k为何值时,
(1)k$\overrightarrow{a}$-2$\overrightarrow{b}$与$\overrightarrow{a}$+$\overrightarrow{b}$垂直?
(2)k$\overrightarrow{a}$-2$\overrightarrow{b}$与$\overrightarrow{a}$+$\overrightarrow{b}$平行?平行时它们是同向还是反向?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若平面向量$\overrightarrow b=(-4,x)$与向量$\overrightarrow a=(2,1)$平行,则$\overrightarrow b$=(  )
A.(-4,2)B.(-4,-2)C.(4,-2)D.(-4,2)或(-4,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知定义在(0,+∞)上的函数f(x)同时满足下列三个条件:
①f(2)=-1;②对任意实数x,y∈(0,+∞)都有f(xy)=f(x)+f(y);③当0<x<1时,f(x)>0.
(1)求f(4),f($\sqrt{2}$)的值;
(2)证明:函数f(x)在(0,+∞)上为减函数;
(3)解关于x的不等式f(2x)<f(x-1)-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.长为l(0<l<1)的线段AB的两个端点在抛物线y=x2上滑动,则线段AB中点M到x轴距离的最小值为$\frac{{l}^{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和为Sn,且2Sn=nan+n(n=1,2,3,…),等比数列{bn}中,b1=a1,且b2,b3的等差中项为b1
(1)求证:数列{an}为等差数列.
(2)请选择一个符合已知条件的且满足a1≠a2的数列{an},并求数列{an•bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x2+(a+2)x+b,f(-1)=-2,对于x∈R,f(x)≥2x恒成立.
(Ⅰ)求函数f(x)的解析式
(Ⅱ)设函数g(x)=$\frac{f(x)}{x}$-4
①证明:函数g(x)在区间[1,∞]上是增函数;
②是否存在正实数m<n,当m≤x≤n时函数g(x)的值域为[m+2,n+2],若存求在出m,n的值,若不存在,则说明理由.

查看答案和解析>>

同步练习册答案