精英家教网 > 高中数学 > 题目详情
f(x)=alog22x+blog4x2+1,(a,b为常数).当x>0时,F(x)=f(x),且F(x)为R上的奇函数.
(Ⅰ)若f(
1
2
)=0
,且f(x)的最小值为0,求F(x)的表达式;
(Ⅱ)在(Ⅰ)的条件下,g(x)=
f(x)+k-1
log2x
在[2,4]上是单调函数,求k的取值范围.
分析:(1)根据f(
1
2
)=0
可消去b,再由f(x)的最小值为0确定f(x)的解析式,最后求出F(x)的解析式.
(2)根据(1)先将g(x)的解析式化简为g(x)=log2x+
k
log2x
+2
,再将t=log2x代入进行换元,可得答案.
解答:解:(1)f(x)=alog22x+blog2x+1
f(
1
2
)=0
得a-b+1=0,
∴f(x)=alog22x+(a+1)log2x+1
若a=0则f(x)=log2x+1无最小值.
∴a≠0.
欲使f(x)取最小值为0,只能使
a>0
4a-(a+1)2
4a
=0
,知a=1,b=2.
∴f(x)=log22x+2log2x+
设x<0则-x>0,
∴F(x)=f(-x)=log22(-x)+2log2(-x)+1
又F(-x)=-F(x),
∴F(x)=-log22(-x)-2log2(-x)-1
又F(0)=0∴F(-x)=
log22x+2log2x+1  (x>0)
0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(x=0)
-log22(-x)-2log2(-x)-1  (x<0)

(2)g(x)=
log22x+2log2x+1+k-1
log2x
=log2x+
k
log2x
+2
.x∈[2,4].
得log2x=t.则y=t+
k
t
+2
,t∈[1,2].
∴当k≤0,或
k
≤1
k
≥2
时,y为单调函数.
综上,k≤1或k≥4.
点评:主要考查求函数解析式的问题.本题属于较难类型的题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(
3
cosx-
3
,sinx)
b
=(1+cosx,cosx)
,设f(x)=
a
b

(1)求f(
25π
6
)
的值;
(2)当x∈[-
π
3
π
6
]
时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

记[x]表示不超过实数x的最大整数.设f(x)=[
x
11
]•[
-11
x
]
,则f(3)=
 
;如果0<x<60,那么函数f(x)的值域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
a
x
(a>0),设F(x)=f(x)+g(x)

(I)求函数F(x)的单调区间;
(II)若以函数y=F(x)(x∈(0,3])的图象上任意一点P(x0,y0)为切点的切线的斜率k≤
1
3
恒成立,求实数a的最小值;
(III)是否存在实数m,使得函数y=g(
2a
x2+1
)+m-1
的图象与函数y=f(1+x2)的图象恰有四个不同的交点?若存在,求出实数m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•上海模拟)设f(x)=
ax+11-ax
(a>0,a≠1)

(1)求f(x)的反函数f-1(x):
(2)讨论f-1(x)在(1.+∞)上的单调性,并加以证明:
(3)令g(x)=1+logax,当[m,n]?(1,+∞)(m<n)时,f-1(x)在[m,n]上的值域是[g(n),g(m)],求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=
1,x≥0
0,x<0
,则函数f(x)的值域是(  )
A、{0,1}
B、[0,1]
C、{(0,1)}
D、(0,1)

查看答案和解析>>

同步练习册答案