精英家教网 > 高中数学 > 题目详情
(1)已知函数f(x)=
x-7
(a-1)x2+4
a-1
•x+5
的定义域为R,求实数a的取值范围;
(2)不等式x-1<2mx+3-m对于满足0≤m≤2的一切实数m都成立,求x的取值范围;
(3)设∫:A→B是从集合A到集合B的映射,在∫的作用下集合A中元素(x,y)与集合B元素(2x-1,4-y)对应,求与B中元素(0,1)对应的A中元素.
分析:(1)函数的定义域为R,说明对所有的实数x分母不等于0恒成立,然后分二次项系数等于0和不等于0进行讨论,当二次项系数不等于0时,同时满足根式有意义,可知二次项系数必大于0;
(2)通过把不等式变形,化为关于m的一次不等式,然后由一次函数在[0,2]上的值大于0列式计算;
(3)直接由
2x-1=0
4-y=1
求解x,y的值,则答案可求.
解答:解:(1)∵f(x)的定义域为R,
∴(a-1)x2+4
a-1
x+5≠0在R上恒成立.
①a-1=0时,即a=1时,5≠0恒成立;
②a-1≠0时,则
a-1>0
16(a-1)-20(a-1)<0

?
a-1>0
-4(a-1)<0
?a>1;
由①②得a≥1;
( 2 )x-1<2mx+3-m
?(2x-1)m+4-x>0.
令g(m)=(2x-1)m+4-x.
知g(m)是关于m的线性函数,只需
g(0)=4-x>0
g(2)=2(2x-1)+4-x>0

?
x<4
x>-
2
3
?-
2
3
<x<4

∴x的取值范围为(-
2
3
,4
);
(3)由题意知
2x-1=0
4-y=1
,解得
x=
1
2
y=3

∴A中元素为(
1
2
,3
).
点评:本题考查了映射的概念,考查了更换主元的思想方法,训练了利用分类讨论的数学思想方法求函数的定义域,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)已知函数f(x)=-x2+4(x∈(-1,2)),P、Q是f(x)图象上的任意两点.
①试求直线PQ的斜率kPQ的取值范围;
②求f(x)图象上任一点切线的斜率k的范围;
(2)由(1)你能得出什么结论?(只须写出结论,不必证明),试运用这个结论解答下面的问题:已知集合MD是满足下列性质函数f(x)的全体:若函数f(x)的定义域为D,对任意的x1,x2∈D,(x1≠x2)有|f(x1)-f(x2)|<|x1-x2|.
①当D=(0,1)时,f(x)=lnx是否属于MD,若属于MD,给予证明,否则说明理由;
②当D=(0,
3
3
)
,函数f(x)=x3+ax+b时,若f(x)∈MD,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知函数f(x)=lg(1+x)+lg(1-x).①求函数f(x)的定义域.②判断函数的奇偶性,并给予证明.
(2)已知函数f(x)=ax+3,(a>0且a≠1),求函数f(x)在[0,2]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知函数f(x)=
x+3(x≤0)
2x(x>0)
,则f(f(-2))为
2
2

(2)不等式f(x)>2的解集是
(-1,0]∪(1,+∞)
(-1,0]∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•浦东新区模拟)(1)已知函数f(x)=ax-x(a>1).
①若f(3)<0,试求a的取值范围;
②写出一组数a,x0(x0≠3,保留4位有效数字),使得f(x0)<0成立;
(2)若曲线y=x+
p
x
(p≠0)上存在两个不同点关于直线y=x对称,求实数p的取值范围;
(3)当0<a<1时,就函数y=ax与y=logax的图象的交点情况提出你的问题,并加以解决.(说明:①函数f(x)=xlnx有如下性质:在区间(0,
1
e
]
上单调递减,在区间[
1
e
,1)
上单调递增.解题过程中可以利用;②将根据提出和解决问题的不同层次区别给分.)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
(1)已知函数f(x)=
1
2
x2   x≤2
log2(x+a)  x>2
在定义域内是连续函数,数列{an}通项公式为an=
1
an
,则数列{an}的所有项之和为1.
(2)过点P(3,3)与曲线(x-2)2-
(y-1)2
4
=1有唯一公共点的直线有且只有两条.
(3)向量
a
=(x2,x+1)
b
=(1-x,t)
,若函数f(x)=
a
b
在区间[-1,1]上是增函数,则实数t的取值范围是(5,+∞);
(4)我们定义非空集合A的真子集的真子集为A的“孙集”,则集合{2,4,6,8,10}的“孙集”有26个.
其中正确的命题有
(1)(2)(4)
(1)(2)(4)
(填序号)

查看答案和解析>>

同步练习册答案