精英家教网 > 高中数学 > 题目详情
已知函数f(x)=alnx,a∈R.
(Ⅰ)当f(x)存在最小值时,求其最小值φ(a)的解析式;
(Ⅱ)对(Ⅰ)中的φ(a),
(ⅰ)当a∈(0,+∞)时,证明:φ(a)≤1;
(ⅱ)当a>0,b>0时,证明:φ′()≤≤φ′().
(Ⅰ)φ(a)=a-alna(a>0);(Ⅱ)详见解析.

试题分析:(Ⅰ)利用导数分析函数单调性,求最值;(Ⅱ)利用导数分析函数单调性,分类讨论.
试题解析:(Ⅰ)求导数,得f ′(x)=(x>0).
(1)当a≤0时,f ′(x)=>0,f(x)在(0,+∞)上是增函数,无最小值.
(2)当a>0时,令f ′(x)=0,解得x=a2
当0<x<a2时,f ′(x)<0,∴f(x)在(0,a2)上是减函数;
当x>a2时,f ′(x)>0,∴f(x)在(a2,+∞)上是增函数.
∴f(x)在x=a2处取得最小值f(a2)=a-alna.
故f(x)的最小值φ(a)的解析式为φ(a)=a-alna(a>0).         6分
(Ⅱ)由(Ⅰ),知φ(a)=a-alna(a>0),
求导数,得φ′(a)=-lna.
(ⅰ)令φ′(a)=0,解得a=1.
当0<a<1时,φ′(a)>0,∴φ(a)在(0,1)上是增函数;
当a>1时,φ′(a)<0,∴φ(a)在(1,+∞)上是减函数.
∴φ(a)在a=1处取得最大值φ(1)=1.
故当a∈(0,+∞)时,总有φ(a)≤1.             10分
(ⅱ)当a>0,b>0时,
=-=-ln,               ①
φ′()=-ln()≤-ln,                  ②
φ′()=-ln()≥-ln=-ln,        ③
由①②③,得φ′()≤≤φ′().         14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数的图象经过两点,如图所示,且函数的值域为.过该函数图象上的动点轴的垂线,垂足为,连接.

(I)求函数的解析式;
(Ⅱ)记的面积为,求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数(其中).
(1) 当时,求函数的单调区间和极值;
(2) 当时,函数上有且只有一个零点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)若是增函数,求b的取值范围;
(Ⅱ)若时取得极值,且时,恒成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数是自然对数的底数).
(1)若曲线处的切线也是抛物线的切线,求的值;
(2)当时,是否存在,使曲线在点处的切线斜率与 在
上的最小值相等?若存在,求符合条件的的个数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(1)记的导函数,若不等式上有解,求实数的取值范围;
(2)若,对任意的,不等式恒成立.求)的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是实数,函数,分别是的导函数,若在区间上恒成立,则称在区间上单调性一致.
(Ⅰ)设,若函数在区间上单调性一致,求实数的取值范围;
(Ⅱ)设,若函数在以为端点的开区间上单调性一致,求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设定义在上的函数是最小正周期为的偶函数,的导函数.当时,;当时,.则函数上的零点个数为          .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数(为非零常数).
(Ⅰ)当时,求函数的最小值; 
(Ⅱ)若恒成立,求的值;
(Ⅲ)对于增区间内的三个实数(其中),
证明:.

查看答案和解析>>

同步练习册答案