精英家教网 > 高中数学 > 题目详情
已知函数的图象经过两点,如图所示,且函数的值域为.过该函数图象上的动点轴的垂线,垂足为,连接.

(I)求函数的解析式;
(Ⅱ)记的面积为,求的最大值.
(I);(II)三角形面积的最大值为16.

试题分析:(I)用待定系数法.由抛物线的对称性及题设可知,函数的对称轴为,顶点为.
将顶点坐标及点(0,0),(0,6)的坐标代入解析式得关于a,b,c方程组,解此方程组,便可得 的解析式.
(II)用三角形面积公式求得三角形的面积与t之间的函数关系式,然后利用导数可求得的面积为,求的最大值.
试题解析:(I)由已知可得函数的对称轴为,顶点为.              2分
方法一:由  
                                    5分
                               6分
方法二:设                             4分
,得                                      5分
                                     6分
(II)              8分
                       9分 
列表得:


4



0



极大值

                 11分
由上表可得时,三角形面积取得最大值
                  13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数.
(1)当时,求函数的最大值;
(2)令,其图象上存在一点,使此处切线的斜率,求实数的取值范围;
(3)当时,方程有唯一实数解,求正数的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)当时,试确定函数在其定义域内的单调性;
(2)求函数上的最小值;
(3)试证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)若函数在区间上是减函数,求实数的最小值;
(Ⅲ)若存在是自然对数的底数)使,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)若函数处的切线垂直轴,求的值;
(Ⅱ)若函数在区间上为增函数,求的取值范围;
(Ⅲ)讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,(其中m为常数).
(1) 试讨论在区间上的单调性;
(2) 令函数.当时,曲线上总存在相异两点,使得过点处的切线互相平行,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=alnx,a∈R.
(Ⅰ)当f(x)存在最小值时,求其最小值φ(a)的解析式;
(Ⅱ)对(Ⅰ)中的φ(a),
(ⅰ)当a∈(0,+∞)时,证明:φ(a)≤1;
(ⅱ)当a>0,b>0时,证明:φ′()≤≤φ′().

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的零点所在区间为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是函数的导数,则的值是(  )
A.B.C.2D.

查看答案和解析>>

同步练习册答案